Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Respirology ; 29(2): 105-135, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38211978

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive disease leading to significant morbidity and mortality. In 2017 the Thoracic Society of Australia and New Zealand (TSANZ) and Lung Foundation Australia (LFA) published a position statement on the treatment of IPF. Since that time, subsidized anti-fibrotic therapy in the form of pirfenidone and nintedanib is now available in both Australia and New Zealand. More recently, evidence has been published in support of nintedanib for non-IPF progressive pulmonary fibrosis (PPF). Additionally, there have been numerous publications relating to the non-pharmacologic management of IPF and PPF. This 2023 update to the position statement for treatment of IPF summarizes developments since 2017 and reaffirms the importance of a multi-faceted approach to the management of IPF and progressive pulmonary fibrosis.


Subject(s)
Idiopathic Pulmonary Fibrosis , Humans , New Zealand , Idiopathic Pulmonary Fibrosis/drug therapy , Fibrosis , Australia , Pyridones/therapeutic use
3.
Pharmacol Ther ; 252: 108562, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37952904

ABSTRACT

The pathogenesis of pulmonary fibrosis, including idiopathic pulmonary fibrosis (IPF) and other forms of interstitial lung disease, involves a complex interplay of various factors including host genetics, environmental pollutants, infection, aberrant repair and dysregulated immune responses. Highly variable clinical outcomes of some ILDs, in particular IPF, have made it difficult to identify the precise mechanisms involved in disease pathogenesis and thus the development of a specific cure or treatment to halt and reverse the decline in patient health. With the advent of in-depth molecular diagnostics, it is becoming evident that the pathogenesis of IPF is unlikely to be the same for all patients and therefore will likely require different treatment approaches. Chronic inflammation is a cardinal feature of IPF and is driven by both innate and adaptive immune responses. Inflammatory cells and activated fibroblasts secrete various pro-inflammatory cytokines and chemokines that perpetuate the inflammatory response and contribute to the recruitment and activation of more immune cells and fibroblasts. The balance between pro-inflammatory and regulatory immune cell subsets, as well as the interactions between immune cell types and resident cells within the lung microenvironment, ultimately determines the extent of fibrosis and the potential for resolution. This review examines the role of the innate and adaptive immune responses in pulmonary fibrosis, with an emphasis on IPF. The role of different immune cell types is discussed as well as novel anti-inflammatory and immunotherapy approaches currently in clinical trial or in preclinical development.


Subject(s)
Idiopathic Pulmonary Fibrosis , Lung Diseases, Interstitial , Humans , Idiopathic Pulmonary Fibrosis/drug therapy , Lung/metabolism , Fibrosis , Inflammation/pathology
4.
Eur Respir J ; 60(5)2022 11.
Article in English | MEDLINE | ID: mdl-35798357

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease associated with chronic inflammation and tissue remodelling leading to fibrosis, reduced pulmonary function, respiratory failure and death. Bleomycin (Blm)-induced lung fibrosis in mice replicates several clinical features of human IPF, including prominent lymphoid aggregates of predominantly B-cells that accumulate in the lung adjacent to areas of active fibrosis. We have shown previously a requirement for B-cells in the development of Blm-induced lung fibrosis in mice. To determine the therapeutic potential of inhibiting B-cell function in pulmonary fibrosis, we examined the effects of anti-CD20 B-cell ablation therapy to selectively remove mature B-cells from the immune system and inhibit Blm-induced lung fibrosis. Anti-CD20 B-cell ablation did not reduce fibrosis in this model; however, immune phenotyping of peripheral blood and lung resident cells revealed that anti-CD20-treated mice retained a high frequency of CD19+ CD138+ plasma cells. Interestingly, high levels of CD138+ cells were also identified in the lung tissue of patients with IPF, consistent with the mouse model. Treatment of mice with bortezomib, which depletes plasma cells, reduced the level of Blm-induced lung fibrosis, implicating plasma cells as important effector cells in the development and progression of pulmonary fibrosis.


Subject(s)
Idiopathic Pulmonary Fibrosis , Lung Diseases, Interstitial , Humans , Mice , Animals , Bleomycin/pharmacology , Plasma Cells , Idiopathic Pulmonary Fibrosis/drug therapy , Lung/metabolism , Lung Diseases, Interstitial/chemically induced
5.
Am J Physiol Lung Cell Mol Physiol ; 321(5): L859-L871, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34524912

ABSTRACT

Alveolar epithelial cell (AEC) senescence is implicated in the pathogenesis of idiopathic pulmonary fibrosis (IPF). Mitochondrial dysfunction including release of mitochondrial DNA (mtDNA) is a feature of senescence, which led us to investigate the role of the DNA-sensing guanine monophosphate-adenine monophosphate (GMP-AMP) synthase (cGAS) in IPF, with a focus on AEC senescence. cGAS expression in fibrotic tissue from lungs of patients with IPF was detected within cells immunoreactive for epithelial cell adhesion molecule (EpCAM) and p21, epithelial and senescence markers, respectively. Submerged primary cultures of AECs isolated from lung tissue of patients with IPF (IPF-AECs, n = 5) exhibited higher baseline senescence than AECs from control donors (Ctrl-AECs, n = 5-7), as assessed by increased nuclear histone 2AXγ phosphorylation, p21 mRNA, and expression of senescence-associated secretory phenotype (SASP) cytokines. Pharmacological cGAS inhibition using RU.521 diminished IPF-AEC senescence in culture and attenuated induction of Ctrl-AEC senescence following etoposide-induced DNA damage. Short interfering RNA (siRNA) knockdown of cGAS also attenuated etoposide-induced senescence of the AEC line, A549. Higher levels of mtDNA were detected in the cytosol and culture supernatants of primary IPF- and etoposide-treated Ctrl-AECs when compared with Ctrl-AECs at baseline. Furthermore, ectopic mtDNA augmented cGAS-dependent senescence of Ctrl-AECs, whereas DNAse I treatment diminished IPF-AEC senescence. This study provides evidence that a self-DNA-driven, cGAS-dependent response augments AEC senescence, identifying cGAS as a potential therapeutic target for IPF.


Subject(s)
Alveolar Epithelial Cells/pathology , Cellular Senescence/physiology , DNA Damage/genetics , Idiopathic Pulmonary Fibrosis/pathology , Nucleotidyltransferases/metabolism , A549 Cells , Benzofurans/pharmacology , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cytokines/biosynthesis , DNA, Mitochondrial/metabolism , Deoxyribonuclease I/pharmacology , Epithelial Cell Adhesion Molecule/metabolism , Etoposide/pharmacology , Humans , Mitochondria/genetics , Mitochondria/pathology , Nucleotidyltransferases/antagonists & inhibitors , Nucleotidyltransferases/genetics , RNA Interference , RNA, Small Interfering/genetics , Signal Transduction/physiology
6.
Biomedicines ; 9(9)2021 Sep 04.
Article in English | MEDLINE | ID: mdl-34572347

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic disease characterised by a dense fibrosing of the lung parenchyma. An association between IPF and cellular senescence is well established and several studies now describe a higher abundance of senescent fibroblasts and epithelial cells in the lungs of IPF patients compared with age-matched controls. The cause of this abnormal accumulation of senescent cells is unknown but evidence suggests that, once established, senescence can be transferred from senescent to non-senescent cells. In this study, we investigated whether senescent human lung fibroblasts (LFs) and alveolar epithelial cells (AECs) could induce a senescent-like phenotype in "naïve" non-senescent LFs in vitro. Primary cultures of LFs from adult control donors (Ctrl-LFs) with a low baseline of senescence were exposed to conditioned medium (CM) from: (i) Ctrl-LFs induced to become senescent using H2O2 or etoposide; (ii) LFs derived from IPF patients (IPF-LFs) with a high baseline of senescence; or (iii) senescence-induced A549 cells, an AEC line. Additionally, ratios of non-senescent Ctrl-LFs and senescence-induced Ctrl-LFs (100:0, 0:100, 50:50, 90:10, 99:1) were co-cultured and their effect on induction of senescence measured. We demonstrated that exposure of naïve non-senescent Ctrl-LFs to CM from senescence-induced Ctrl-LFs and AECs and IPF-LFs increased the markers of senescence including nuclear localisation of phosphorylated-H2A histone family member X (H2AXγ) and expression of p21, IL-6 and IL-8 in Ctrl-LFs. Additionally, co-cultures of non-senescent and senescence-induced Ctrl-LFs induced a senescent-like phenotype in the non-senescent cells. These data suggest that the phenomenon of "senescence-induced senescence" can occur in vitro in primary cultures of human LFs, and provides a possible explanation for the abnormal abundance of senescent cells in the lungs of IPF patients.

7.
Biomedicines ; 9(5)2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33946612

ABSTRACT

The interleukin (IL)-6 family of cytokines and exaggerated signal transducer and activator of transcription (STAT)3 signaling is implicated in idiopathic pulmonary fibrosis (IPF) pathogenesis, but the mechanisms regulating STAT3 expression and function are unknown. Suppressor of cytokine signaling (SOCS)1 and SOCS3 block STAT3, and low SOCS1 levels have been reported in IPF fibroblasts and shown to facilitate collagen production. Fibroblasts and lung tissue from IPF patients and controls were used to examine the mechanisms underlying SOCS1 down-regulation in IPF. A significant reduction in basal SOCS1 mRNA in IPF fibroblasts was confirmed. However, there was no difference in the kinetics of activation, and methylation of SOCS1 in control and IPF lung fibroblasts was low and unaffected by 5'-aza-2'-deoxycytidine' treatment. SOCS1 is a target of microRNA-155 and although microRNA-155 levels were increased in IPF tissue, they were reduced in IPF fibroblasts. Therefore, SOCS1 is not regulated by SOCS1 gene methylation or microRNA155 in these cells. In conclusion, we confirmed that IPF fibroblasts had lower levels of SOCS1 mRNA compared with control fibroblasts, but we were unable to determine the mechanism. Furthermore, although SOCS1 may be important in the fibrotic process, we were unable to find a significant role for SOCS1 in regulating fibroblast function.

8.
Clin Transl Immunology ; 9(7): e1153, 2020.
Article in English | MEDLINE | ID: mdl-32742653

ABSTRACT

Pulmonary fibrosis occurs in a heterogeneous group of lung disorders and is characterised by an excessive deposition of extracellular matrix proteins within the pulmonary interstitium, leading to impaired gas transfer and a loss of lung function. In the past 10 years, there has been a dramatic increase in our understanding of the immune system and how it contributes to fibrogenic processes within the lung. This review will compare some of the models used to investigate the pathogenesis and treatment of pulmonary fibrosis, in particular those used to study immune cell pathogenicity in idiopathic pulmonary fibrosis, highlighting their advantages and disadvantages in dissecting human disease.

9.
Int J Biochem Cell Biol ; 126: 105802, 2020 09.
Article in English | MEDLINE | ID: mdl-32668329

ABSTRACT

Pulmonary fibrosis is characterised by excessive scarring in the lung which leads to compromised lung function, serious breathing problems and in some diseases, death. It includes several lung disorders with idiopathic pulmonary fibrosis (IPF) the most common and most severe. Pulmonary fibrosis is considered to be perpetuated by aberrant wound healing which leads to fibroblast accumulation, differentiation and activation, and deposition of excessive amounts of extracellular matrix (ECM) components, in particular, collagen. Recent studies have identified the importance of changes in the composition and structure of lung ECM during the development of pulmonary fibrosis and the interaction between ECM and lung cells. There is strong evidence that increased matrix stiffness induces changes in cell function including proliferation, migration, differentiation and activation. Understanding how changes in the ECM microenvironment influence cell behaviour during fibrogenesis, and the mechanisms regulating these changes, will provide insight for developing new treatments.


Subject(s)
Extracellular Matrix/metabolism , Mechanotransduction, Cellular , Pulmonary Fibrosis/pathology , Animals , Collagen/metabolism , Humans , Pulmonary Fibrosis/metabolism
10.
Curr Opin Immunol ; 64: 88-109, 2020 06.
Article in English | MEDLINE | ID: mdl-32485577

ABSTRACT

The mesothelium when first described was thought to function purely as a non-adhesive surface to facilitate intracoelomic movement of organs. However, the mesothelium is now recognized as a dynamic cellular membrane with many important functions that maintain serosal integrity and homeostasis. For example, mesothelial cells interact with and help regulate the body's inflammatory and immune system following infection, injury, or malignancy. With recent advances in our understanding of checkpoint molecules and the advent of novel immunotherapy approaches, there has been an increase in the number of studies examining mesothelial and immune cell interaction, in particular the role of these interactions in malignant mesothelioma. This review will highlight some of the recent advances in our understanding of how mesothelial cells help regulate serosal immunity and how in a malignant environment, the immune system is hijacked to stimulate tumor growth. Ways to treat mesothelioma using immunotherapy approaches will also be discussed.


Subject(s)
Mesothelioma, Malignant , Mesothelioma , Epithelial Cells , Humans , Immunity , Immunotherapy , Mesothelioma/pathology , Mesothelioma/therapy
11.
Pharmaceutics ; 12(4)2020 Apr 24.
Article in English | MEDLINE | ID: mdl-32344567

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease marked by excessive accumulation of lung fibroblasts (LFs) and collagen in the lung parenchyma. The mechanisms that underlie IPF pathophysiology are thought to reflect repeated alveolar epithelial injury leading to an aberrant wound repair response. Recent work has shown that IPF-LFs display increased characteristics of senescence including growth arrest and a senescence-associated secretory phenotype (SASP) suggesting that senescent LFs contribute to dysfunctional wound repair process. Here, we investigated the influence of senescent LFs on alveolar epithelial cell repair responses in a co-culture system. Alveolar epithelial cell proliferation was attenuated when in co-culture with cells or conditioned media from, senescence-induced control LFs or IPF-LFs. Cell-cycle analyses showed that a larger number of epithelial cells were arrested in G2/M phase when co-cultured with IPF-LFs, than in monoculture. Paradoxically, the presence of LFs resulted in increased A549 migration after mechanical injury. Our data suggest that senescent LFs may contribute to aberrant re-epithelialization by inhibiting proliferation in IPF.

12.
Clin Sci (Lond) ; 134(7): 889-905, 2020 04 17.
Article in English | MEDLINE | ID: mdl-32219338

ABSTRACT

Senescence and mitochondrial stress are mutually reinforcing age-related processes that contribute to idiopathic pulmonary fibrosis (IPF); a lethal disease that manifests primarily in the elderly. Whilst evidence is accumulating that GMP-AMP synthase (cGAS) is crucial in perpetuating senescence by binding damaged DNA released into the cytosol, its role in IPF is not known. The present study examines the contributions of cGAS and self DNA to the senescence of lung fibroblasts from IPF patients (IPF-LFs) and age-matched controls (Ctrl-LFs). cGAS immunoreactivity was observed in regions of fibrosis associated with fibroblasts in lung tissue of IPF patients. Pharmacological inhibition of cGAS or its knockdown by silencing RNA (siRNA) diminished the escalation of IPF-LF senescence in culture over 7 days as measured by decreased p21 and p16 expression, histone 2AXγ phosphorylation and/or IL-6 production (P < 0.05, n = 5-8). The targeting of cGAS also attenuated etoposide-induced senescence in Ctrl-LFs (P < 0.05, n = 5-8). Levels of mitochondrial DNA (mDNA) detected by qPCR in the cytosol and medium of IPF-LFs or senescence-induced Ctrl-LFs were higher than Ctrl-LFs at baseline (P < 0.05, n = 5-7). The addition of DNAse I (100 U/ml) deaccelerated IPF-LF senescence (P < 0.05, n = 5), whereas ectopic mDNA or the induction of endogenous mDNA release augmented Ctrl-LF senescence in a cGAS-dependent manner (P < 0.05, n = 5). In conclusion, we provide evidence that cGAS reinforces lung fibroblast senescence involving damaged self DNA. The targeting of cGAS to supress senescent-like responses may have potential important therapeutic implications in the treatment of IPF.


Subject(s)
Cell Proliferation , Cellular Senescence , DNA, Mitochondrial/metabolism , Fibroblasts/enzymology , Idiopathic Pulmonary Fibrosis/enzymology , Lung/enzymology , Nucleotidyltransferases/metabolism , Case-Control Studies , Cell Proliferation/drug effects , Cells, Cultured , Cellular Senescence/drug effects , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , DNA Damage , DNA, Mitochondrial/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Enzyme Inhibitors/pharmacology , Fibroblasts/drug effects , Fibroblasts/pathology , Histones/metabolism , Humans , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/pathology , Interleukin-6/genetics , Interleukin-6/metabolism , Lung/drug effects , Lung/pathology , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Nucleotidyltransferases/antagonists & inhibitors , Nucleotidyltransferases/genetics , Paracrine Communication , Phosphorylation , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism
13.
Dis Markers ; 2019: 8628612, 2019.
Article in English | MEDLINE | ID: mdl-31481984

ABSTRACT

Malignant pleural mesothelioma (MPM) is an incurable cancer of the pleura that can be difficult to diagnose. Biomarkers for an easier and/or earlier diagnosis are needed. Approximately 90% of MPM patients develop a pleural effusion (PE). PEs are ideal sources of biomarkers as the fluid would almost always require drainage for diagnostic and/or therapeutic reasons. However, differentiating MPM PE from PE caused by other diseases can be challenging. MicroRNAs are popular biomarkers given their stable expression in tissue and fluid. MicroRNAs have been analysed in PE cytology samples for the diagnosis of MPM but have not been measured in frozen/fresh PE. We hypothesise that microRNAs expressed in PE are biomarkers for MPM. TaqMan OpenArray was used to analyse over 700 microRNAs in PE cells and supernatants from 26 MPMs and 21 other PE-causing diseases. In PE cells, combining miR-143, miR-210, and miR-200c could differentiate MPM with an area under the curve (AUC) of 0.92. The three-microRNA signature could also discriminate MPM from a further 40 adenocarcinomas with an AUC of 0.9887. These results suggest that the expression of miR-143, miR-210, and miR-200c in PE cells might provide a signature for diagnosing MPM.


Subject(s)
Biomarkers, Tumor/genetics , Lung Neoplasms/genetics , Mesothelioma/genetics , MicroRNAs/genetics , Pleural Effusion, Malignant/genetics , Aged , Aged, 80 and over , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/standards , Female , Humans , Lung Neoplasms/metabolism , Male , Mesothelioma/metabolism , Mesothelioma, Malignant , MicroRNAs/metabolism , MicroRNAs/standards , Middle Aged , Pleural Effusion, Malignant/metabolism , Sensitivity and Specificity , Transcriptome
14.
Am J Respir Cell Mol Biol ; 61(1): 61-73, 2019 07.
Article in English | MEDLINE | ID: mdl-30608861

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease of unknown cause with a median survival of only 3 years. Other investigators and we have shown that fibroblasts derived from IPF lungs display characteristics of senescent cells, and that dysregulated activation of the transcription factor signal transducer and activator of transcription 3 (STAT3) correlates with IPF progression. The question of whether STAT3 activation is involved in fibroblast senescence remains unanswered. We hypothesized that inhibiting STAT3 activation after oxidant-induced senescence would attenuate characteristics of the senescent phenotype. We aimed to characterize a model of oxidant-induced senescence in human lung fibroblasts and to determine the effect of inhibiting STAT3 activity on the development of senescence. Exposing human lung fibroblasts to 150 µM hydrogen peroxide (H2O2) resulted in increased senescence-associated ß-galactosidase content and expression of p21 and IL-6, all of which are features of senescence. The shift into senescence was accompanied by an increase of STAT3 translocation to the nucleus and mitochondria. Additionally, Seahorse analysis provided evidence of increased mitochondrial respiration characterized by increased basal respiration, proton leak, and an associated increase in superoxide (O2-) production in senescent fibroblasts. Targeting STAT3 activity using the small-molecule inhibitor STA-21 attenuated IL-6 production, reduced p21 levels, decreased senescence-associated ß-galactosidase accumulation, and restored normal mitochondrial function. The results of this study illustrate that stress-induced senescence in lung fibroblasts involves the activation of STAT3, which can be pharmacologically modulated.


Subject(s)
Cellular Senescence/drug effects , Fibroblasts/pathology , Lung/pathology , Oxidants/toxicity , STAT3 Transcription Factor/metabolism , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cell Respiration/drug effects , Fibroblasts/drug effects , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Phenotype , Phosphorylation/drug effects , Polycyclic Compounds/pharmacology , Protein Transport/drug effects
15.
Biochem Biophys Res Commun ; 510(2): 198-204, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30685089

ABSTRACT

Malignant mesothelioma is an aggressive fibrous tumor, predominantly of the pleura, with a very poor prognosis. Cell-matrix interactions are recognized important determinants of tumor growth and invasiveness but the role of the extracellular matrix in mesothelioma is unknown. Mesothelioma cells synthesize collagen as well as transforming growth factor-beta (TGF-ß), a key regulator of collagen production. This study examined the effect of inhibiting collagen production on mesothelioma cell proliferation in vitro and tumor growth in vivo. Collagen production by mesothelioma cells was inhibited by incubating cells in vitro with the proline analogue thiaproline (thiazolidine-4-carboxylic acid) or by oral administration of thiaproline in a murine tumor model. Cell cytotoxicity was measured using neutral red uptake and lactate dehydrogenase assays. Proliferation was measured by tritiated thymidine incorporation, and inflammatory cell influx, proliferation, apoptosis and angiogenesis in tumors examined by immunohistochemical labelling. Tumor size was determined by tumor weight and collagen production was measured by HPLC. Thiaproline at non-toxic doses significantly reduced basal and TGF-ß-induced collagen production by over 50% and cell proliferation by over 65%. In vivo thiaproline administration inhibited tumor growth at 10 days, decreasing the median tumor weight by 80%. The mean concentration of collagen was 50% lower in the thiaproline-treated tumors compared with the controls. There were no significant differences in vasculature or inflammatory cell infiltration but apoptosis was increased in thiaproline treated tumors at day 10. In conclusion, these observations strongly support a role for collagen in mesothelioma growth and establish the potential for inhibitors of collagen synthesis in mesothelioma treatment.


Subject(s)
Collagen/biosynthesis , Lung Neoplasms/metabolism , Mesothelioma/metabolism , Pleural Neoplasms/metabolism , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Cell Line, Tumor , Cell Proliferation , Collagen/antagonists & inhibitors , Disease Models, Animal , Extracellular Matrix/metabolism , Female , Humans , Inflammation , Lung Neoplasms/pathology , Mesothelioma/pathology , Mesothelioma, Malignant , Mice , Mice, Inbred CBA , Pleural Neoplasms/pathology , Thiazolidines/pharmacology , Transforming Growth Factor beta/metabolism
16.
Sci Transl Med ; 10(460)2018 09 26.
Article in English | MEDLINE | ID: mdl-30257954

ABSTRACT

Pulmonary fibrosis is a progressive inflammatory disease with high mortality and limited therapeutic options. Previous genetic and immunologic investigations suggest common intersections between idiopathic pulmonary fibrosis (IPF), sarcoidosis, and murine models of pulmonary fibrosis. To identify immune responses that precede collagen deposition, we conducted molecular, immunohistochemical, and flow cytometric analysis of human and murine specimens. Immunohistochemistry revealed programmed cell death-1 (PD-1) up-regulation on IPF lymphocytes. PD-1+CD4+ T cells with reduced proliferative capacity and increased transforming growth factor-ß (TGF-ß)/interleukin-17A (IL-17A) expression were detected in IPF, sarcoidosis, and bleomycin CD4+ T cells. PD-1+ T helper 17 cells are the predominant CD4+ T cell subset expressing TGF-ß. Coculture of PD-1+CD4+ T cells with human lung fibroblasts induced collagen-1 production. Strikingly, ex vivo PD-1 pathway blockade resulted in reductions in TGF-ß and IL-17A expression from CD4+ T cells, with concomitant declines in collagen-1 production from fibroblasts. Molecular analysis demonstrated PD-1 regulation of the transcription factor STAT3 (signal transducer and activator of transcription 3). Chemical blockade of STAT3, using the inhibitor STATTIC, inhibited collagen-1 production. Both bleomycin administration to PD-1 null mice or use of antibody against programmed cell death ligand 1 (PD-L1) demonstrated significantly reduced fibrosis compared to controls. This work identifies a critical, previously unrecognized role for PD-1+CD4+ T cells in pulmonary fibrosis, supporting the use of readily available therapeutics that directly address interstitial lung disease pathophysiology.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , Idiopathic Pulmonary Fibrosis/immunology , Idiopathic Pulmonary Fibrosis/pathology , Interleukin-17/metabolism , Programmed Cell Death 1 Receptor/metabolism , STAT3 Transcription Factor/metabolism , Transforming Growth Factor beta1/biosynthesis , Up-Regulation , Adult , Aged , Animals , Bleomycin , Cell Proliferation , Collagen Type I/metabolism , Disease Models, Animal , Female , Fibroblasts/metabolism , Gene Expression Regulation , Humans , Idiopathic Pulmonary Fibrosis/genetics , Male , Mice , Middle Aged , RNA, Messenger/genetics , RNA, Messenger/metabolism , STAT3 Transcription Factor/genetics , Sarcoidosis/immunology , Sarcoidosis/pathology , Th17 Cells/metabolism
17.
J Cell Mol Med ; 22(12): 5847-5861, 2018 12.
Article in English | MEDLINE | ID: mdl-30255990

ABSTRACT

Increasing evidence highlights that senescence plays an important role in idiopathic pulmonary fibrosis (IPF). This study delineates the specific contribution of mitochondria and the superoxide they form to the senescent phenotype of lung fibroblasts from IPF patients (IPF-LFs). Primary cultures of IPF-LFs exhibited an intensified DNA damage response (DDR) and were more senescent than age-matched fibroblasts from control donors (Ctrl-LFs). Furthermore, IPF-LFs exhibited mitochondrial dysfunction, exemplified by increases in mitochondrial superoxide, DNA, stress and activation of mTORC1. The DNA damaging agent etoposide elicited a DDR and augmented senescence in Ctrl-LFs, which were accompanied by disturbances in mitochondrial homoeostasis including heightened superoxide production. However, etoposide had no effect on IPF-LFs. Mitochondrial perturbation by rotenone involving sharp increases in superoxide production also evoked a DDR and senescence in Ctrl-LFs, but not IPF-LFs. Inhibition of mTORC1, antioxidant treatment and a mitochondrial targeting antioxidant decelerated IPF-LF senescence and/or attenuated pharmacologically induced Ctrl-LF senescence. In conclusion, increased superoxide production by dysfunctional mitochondria reinforces lung fibroblast senescence via prolongation of the DDR. As part of an auto-amplifying loop, mTORC1 is activated, altering mitochondrial homoeostasis and increasing superoxide production. Deeper understanding the mechanisms by which mitochondria contribute to fibroblast senescence in IPF has potentially important therapeutic implications.


Subject(s)
Cellular Senescence , Fibroblasts/pathology , Idiopathic Pulmonary Fibrosis/pathology , Lung/pathology , Mitochondria/pathology , Acetylcysteine/pharmacology , Biomarkers/metabolism , Cellular Senescence/drug effects , Cyclic N-Oxides/metabolism , Down-Regulation/drug effects , Etoposide/pharmacology , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Myofibroblasts/drug effects , Myofibroblasts/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Rotenone/pharmacology , Sirolimus/pharmacology
19.
Am J Physiol Lung Cell Mol Physiol ; 315(2): L162-L172, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29696986

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic fibrosing interstitial pneumonia of unknown cause with a median survival of only three years. Little is known about the mechanisms that precede the excessive collagen deposition seen in IPF, but cellular senescence has been strongly implicated in disease pathology. Senescence is a state of irreversible cell-cycle arrest accompanied by an abnormal secretory profile and is thought to play a critical role in both development and wound repair. Normally, once a senescent cell has contributed to wound repair, it is promptly removed from the environment via infiltrating immune cells. However, if immune clearance fails, the persistence of senescent cells is thought to drive disease pathology through their altered secretory profile. One of the major cell types involved in wound healing is fibroblasts, and senescent fibroblasts have been identified in the lungs of patients with IPF and in fibroblast cultures from IPF lungs. The question of what is driving abnormally high numbers of fibroblasts into senescence remains unanswered. The transcription factor signal transducer and activator of transcription 3 (STAT3) plays a role in a myriad of processes, including cell-cycle progression, gene transcription, as well as mitochondrial respiration, all of which are dysregulated during senescence. Activation of STAT3 has previously been shown to correlate with IPF progression and therefore is a potential molecular target to modify early-stage senescence and restore normal fibroblast function. This review summarizes what is presently known about fibroblast senescence in IPF and how STAT3 may contribute to this phenotype.


Subject(s)
Cellular Senescence , Fibroblasts , Gene Expression Regulation , Idiopathic Pulmonary Fibrosis , Lung , Signal Transduction , Animals , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Lung/metabolism , Lung/pathology
20.
Oncotarget ; 8(44): 78193-78207, 2017 Sep 29.
Article in English | MEDLINE | ID: mdl-29100460

ABSTRACT

Malignant mesothelioma is an aggressive and often fatal cancer associated with asbestos exposure. The disease originates in the mesothelial lining of the serosal cavities, most commonly affecting the pleura. Survival rates are low as diagnosis often occurs at an advanced stage and current treatments are limited. Identifying new diagnostic and therapeutic targets for mesothelioma remains a priority, particularly for the new wave of victims exposed to asbestos through do-it-yourself renovations and in countries where asbestos is still mined and used. Recent advances have demonstrated a biological role for the small but powerful gene regulators microRNA (miRNA) in mesothelioma. A number of potential therapeutic targets have been identified. MiRNA have also become popular as potential biomarkers for mesothelioma due to their stable expression in bodily fluid and tissues. In this review, we highlight the current challenges associated with the diagnosis and treatment of mesothelioma and discuss how targeting miRNA may improve diagnostic, prognostic and therapeutic approaches.

SELECTION OF CITATIONS
SEARCH DETAIL
...