Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Nat Med ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38942992

ABSTRACT

Metastasis occurs frequently after resection of pancreatic cancer (PaC). In this study, we hypothesized that multi-parametric analysis of pre-metastatic liver biopsies would classify patients according to their metastatic risk, timing and organ site. Liver biopsies obtained during pancreatectomy from 49 patients with localized PaC and 19 control patients with non-cancerous pancreatic lesions were analyzed, combining metabolomic, tissue and single-cell transcriptomics and multiplex imaging approaches. Patients were followed prospectively (median 3 years) and classified into four recurrence groups; early (<6 months after resection) or late (>6 months after resection) liver metastasis (LiM); extrahepatic metastasis (EHM); and disease-free survivors (no evidence of disease (NED)). Overall, PaC livers exhibited signs of augmented inflammation compared to controls. Enrichment of neutrophil extracellular traps (NETs), Ki-67 upregulation and decreased liver creatine significantly distinguished those with future metastasis from NED. Patients with future LiM were characterized by scant T cell lobular infiltration, less steatosis and higher levels of citrullinated H3 compared to patients who developed EHM, who had overexpression of interferon target genes (MX1 and NR1D1) and an increase of CD11B+ natural killer (NK) cells. Upregulation of sortilin-1 and prominent NETs, together with the lack of T cells and a reduction in CD11B+ NK cells, differentiated patients with early-onset LiM from those with late-onset LiM. Liver profiles of NED closely resembled those of controls. Using the above parameters, a machine-learning-based model was developed that successfully predicted the metastatic outcome at the time of surgery with 78% accuracy. Therefore, multi-parametric profiling of liver biopsies at the time of PaC diagnosis may determine metastatic risk and organotropism and guide clinical stratification for optimal treatment selection.

2.
Nat Cell Biol ; 25(9): 1254-1264, 2023 09.
Article in English | MEDLINE | ID: mdl-37580388

ABSTRACT

Lysosomes are catabolic organelles that govern numerous cellular processes, including macromolecule degradation, nutrient signalling and ion homeostasis. Aberrant changes in lysosome abundance are implicated in human diseases. Here we outline the mechanisms of lysosome biogenesis and turnover, and discuss how changes in the lysosome pool impact physiological and pathophysiological processes.


Subject(s)
Lysosomes , Organelles , Humans , Lysosomes/metabolism , Homeostasis , Signal Transduction , Autophagy/physiology
3.
J Biol Chem ; 299(5): 104644, 2023 05.
Article in English | MEDLINE | ID: mdl-36965617

ABSTRACT

The mechanistic target of rapamycin complex 1 (mTORC1) is a central regulator of mammalian cell growth that is dysregulated in a number of human diseases, including metabolic syndromes, aging, and cancer. Structural, biochemical, and pharmacological studies that have increased our understanding of how mTORC1 executes growth control often relied upon purified mTORC1 protein. However, current immunoaffinity-based purification methods are expensive, inefficient, and do not necessarily isolate endogenous mTORC1, hampering their overall utility in research. Here we present a simple tool to isolate endogenous mTORC1 from various cellular sources. By recombinantly expressing and isolating mTORC1-binding Rag GTPases from Escherichia coli and using them as affinity probes, we demonstrate that mTORC1 can be isolated from mouse, bovine, and human sources. Our results indicate that mTORC1 isolated by this relatively inexpensive method is catalytically active and amenable to scaling. Collectively, this tool may be utilized to isolate mTORC1 from various cellular sources, organs, and disease contexts, aiding mTORC1-related research.


Subject(s)
Biotechnology , Mechanistic Target of Rapamycin Complex 1 , Monomeric GTP-Binding Proteins , Recombinant Proteins , Animals , Cattle , Humans , Mice , Mammals/metabolism , Mechanistic Target of Rapamycin Complex 1/chemistry , Mechanistic Target of Rapamycin Complex 1/isolation & purification , Mechanistic Target of Rapamycin Complex 1/metabolism , Monomeric GTP-Binding Proteins/chemistry , Monomeric GTP-Binding Proteins/genetics , Monomeric GTP-Binding Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Escherichia coli/genetics , Biotechnology/methods , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Models, Molecular
4.
J Biol Chem ; 298(6): 102030, 2022 06.
Article in English | MEDLINE | ID: mdl-35577075

ABSTRACT

The mechanistic target of rapamycin complex 1 (mTORC1) is a serine/threonine kinase complex that promotes anabolic processes including protein, lipid, and nucleotide synthesis, while suppressing catabolic processes such as macroautophagy. mTORC1 activity is regulated by growth factors and amino acids, which signal through distinct but integrated molecular pathways: growth factors largely signal through the PI3K/Akt-dependent pathway, whereas the availabilities of amino acids leucine and arginine are communicated to mTORC1 by the Rag-GTPase pathway. While it is relatively well described how acute changes in leucine and arginine levels affect mTORC1 signaling, the effects of prolonged amino acid deprivation remain less well understood. Here, we demonstrate that prolonged deprivation of arginine and/or leucine leads to reactivation of mTORC1 activity, which reaches activation levels similar to those observed in nutrient-rich conditions. Surprisingly, we find that this reactivation is independent of the regeneration of amino acids by canonical autophagy or proteasomal degradation but is dependent on PI3K/Akt signaling. Together, our data identify a novel crosstalk between the amino acid and PI3K/Akt signaling pathways upstream of mTORC1. These observations extend our understanding of the role of mTORC1 in growth-related diseases and indicate that dietary intervention by removal of leucine and/or arginine may be an ineffective therapeutic approach.


Subject(s)
Mechanistic Target of Rapamycin Complex 1 , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Amino Acids , Animals , Arginine/metabolism , Leucine/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism
5.
Nat Metab ; 4(4): 435-443, 2022 04.
Article in English | MEDLINE | ID: mdl-35361954

ABSTRACT

The alteration of metabolic pathways is a critical strategy for cancer cells to attain the traits necessary for metastasis in disease progression. Here, we find that dysregulation of propionate metabolism produces a pro-aggressive signature in breast and lung cancer cells, increasing their metastatic potential. This occurs through the downregulation of methylmalonyl coenzyme A epimerase (MCEE), mediated by an extracellular signal-regulated kinase 2-driven transcription factor Sp1/early growth response protein 1 transcriptional switch driven by metastatic signalling at its promoter level. The loss of MCEE results in reduced propionate-driven anaplerotic flux and intracellular and intratumoral accumulation of methylmalonic acid, a by-product of propionate metabolism that promotes cancer cell invasiveness. Altogether, we present a previously uncharacterized dysregulation of propionate metabolism as an important contributor to cancer and a valuable potential target in the therapeutic treatment of metastatic carcinomas.


Subject(s)
Neoplasms , Propionates , Humans , Methylmalonic Acid/metabolism , Phenotype , Propionates/pharmacology , Signal Transduction
6.
Nature ; 585(7824): 283-287, 2020 09.
Article in English | MEDLINE | ID: mdl-32814897

ABSTRACT

The risk of cancer and associated mortality increases substantially in humans from the age of 65 years onwards1-6. Nonetheless, our understanding of the complex relationship between age and cancer is still in its infancy2,3,7,8. For decades, this link has largely been attributed to increased exposure time to mutagens in older individuals. However, this view does not account for the established role of diet, exercise and small molecules that target the pace of metabolic ageing9-12. Here we show that metabolic alterations that occur with age can produce a systemic environment that favours the progression and aggressiveness of tumours. Specifically, we show that methylmalonic acid (MMA), a by-product of propionate metabolism, is upregulated in the serum of older people and functions as a mediator of tumour progression. We traced this to the ability of MMA to induce SOX4 expression and consequently to elicit transcriptional reprogramming that can endow cancer cells with aggressive properties. Thus, the accumulation of MMA represents a link between ageing and cancer progression, suggesting that MMA is a promising therapeutic target for advanced carcinomas.


Subject(s)
Aging/metabolism , Disease Progression , Methylmalonic Acid/metabolism , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplasms/pathology , Adult , Aged , Aging/blood , Aging/genetics , Animals , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Methylmalonic Acid/blood , Mice , Middle Aged , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Neoplasm Metastasis/genetics , Neoplasm Metastasis/pathology , Neoplasms/blood , Neoplasms/genetics , SOXC Transcription Factors/metabolism , Signal Transduction , Transcriptome/genetics , Transforming Growth Factor beta/metabolism
7.
Nat Commun ; 11(1): 1416, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32184389

ABSTRACT

The kinase mTOR complex 1 (mTORC1) promotes cellular growth and is frequently dysregulated in cancers. In response to nutrients, mTORC1 is activated on lysosomes by Rag and Rheb guanosine triphosphatases (GTPases) and drives biosynthetic processes. How limitations in nutrients suppress mTORC1 activity remains poorly understood. We find that when amino acids are limited, the Rap1-GTPases confine lysosomes to the perinuclear region and reduce lysosome abundance, which suppresses mTORC1 signaling. Rap1 activation, which is independent of known amino acid signaling factors, limits the lysosomal surface available for mTORC1 activation. Conversely, Rap1 depletion expands the lysosome population, which markedly increases association between mTORC1 and its lysosome-borne activators, leading to mTORC1 hyperactivity. Taken together, we establish Rap1 as a critical coordinator of the lysosomal system, and propose that aberrant changes in lysosomal surface availability can impact mTORC1 signaling output.


Subject(s)
Amino Acids/metabolism , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , rap GTP-Binding Proteins/metabolism , rap1 GTP-Binding Proteins/metabolism , Humans , Lysosomes/enzymology , Lysosomes/genetics , Mechanistic Target of Rapamycin Complex 1/genetics , Signal Transduction , rap GTP-Binding Proteins/genetics , rap1 GTP-Binding Proteins/genetics
8.
Cancer Cell ; 36(4): 402-417.e13, 2019 10 14.
Article in English | MEDLINE | ID: mdl-31564638

ABSTRACT

Metastasis is the leading cause of cancer mortality. Chromatin remodeling provides the foundation for the cellular reprogramming necessary to drive metastasis. However, little is known about the nature of this remodeling and its regulation. Here, we show that metastasis-inducing pathways regulate histone chaperones to reduce canonical histone incorporation into chromatin, triggering deposition of H3.3 variant at the promoters of poor-prognosis genes and metastasis-inducing transcription factors. This specific incorporation of H3.3 into chromatin is both necessary and sufficient for the induction of aggressive traits that allow for metastasis formation. Together, our data clearly show incorporation of histone variant H3.3 into chromatin as a major regulator of cell fate during tumorigenesis, and histone chaperones as valuable therapeutic targets for invasive carcinomas.


Subject(s)
Carcinoma/pathology , Chromatin/metabolism , Gene Expression Regulation, Neoplastic , Histones/metabolism , Neoplasm Metastasis/genetics , Animals , Carcinogenesis/genetics , Carcinoma/genetics , Cell Line, Tumor , Chromatin/genetics , Chromatin Assembly Factor-1/genetics , Chromatin Assembly Factor-1/metabolism , Disease Progression , Epigenesis, Genetic , Epithelial-Mesenchymal Transition/genetics , Female , Histones/genetics , Humans , Male , Mice , Promoter Regions, Genetic/genetics , RNA-Seq , Transcription Factors/genetics , Xenograft Model Antitumor Assays
9.
Proc Natl Acad Sci U S A ; 116(39): 19523-19529, 2019 09 24.
Article in English | MEDLINE | ID: mdl-31492813

ABSTRACT

The mTORC1 pathway regulates cell growth and proliferation by properly coupling critical processes such as gene expression, protein translation, and metabolism to the availability of growth factors and hormones, nutrients, cellular energetics, oxygen status, and cell stress. Although multiple cytoplasmic substrates of mTORC1 have been identified, how mTORC1 signals within the nucleus remains incompletely understood. Here, we report a mechanism by which mTORC1 modulates the phosphorylation of multiple nuclear events. We observed a significant nuclear enrichment of GSK3 when mTORC1 was suppressed, which promotes phosphorylation of several proteins such as GTF2F1 and FOXK1. Importantly, nuclear localization of GSK3 is sufficient to suppress cell proliferation. Additionally, expression of a nuclear exporter of GSK3, FRAT, restricts the nuclear localization of GSK3, represses nuclear protein phosphorylation, and prevents rapamycin-induced cytostasis. Finally, we observe a correlation between rapamycin resistance and FRAT expression in multiple-cancer cell lines. Resistance to Food and Drug Administration (FDA)-approved rapamycin analogs (rapalogs) is observed in many tumor settings, but the underling mechanisms remain incompletely understood. Given that FRAT expression levels are frequently elevated in various cancers, our observations provide a potential biomarker and strategy for overcoming rapamycin resistance.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Proto-Oncogene Proteins/metabolism , Sirolimus/pharmacology , Active Transport, Cell Nucleus , Adaptor Proteins, Signal Transducing/drug effects , Animals , Carrier Proteins/drug effects , Carrier Proteins/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , Cell Nucleus/metabolism , Cell Proliferation/drug effects , Cytoplasm/metabolism , Drug Resistance, Neoplasm/physiology , Embryonic Stem Cells , Forkhead Transcription Factors/metabolism , Glycogen Synthase Kinase 3/metabolism , Humans , Mechanistic Target of Rapamycin Complex 1/drug effects , Mice , Neoplasm Proteins/drug effects , Neoplasm Proteins/metabolism , Nuclear Proteins/metabolism , Proto-Oncogene Proteins/drug effects , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Transcription Factors/metabolism
10.
Oncogene ; 37(46): 6083-6095, 2018 11.
Article in English | MEDLINE | ID: mdl-29993038

ABSTRACT

Hyperactivation of Notch signaling and the cellular hypoxic response are frequently observed in cancers, with increasing reports of connections to tumor initiation and progression. The two signaling mechanisms are known to intersect, but while it is well established that hypoxia regulates Notch signaling, less is known about whether Notch can regulate the cellular hypoxic response. We now report that Notch signaling specifically controls expression of HIF2α, a key mediator of the cellular hypoxic response. Transcriptional upregulation of HIF2α by Notch under normoxic conditions leads to elevated HIF2α protein levels in primary breast cancer cells as well as in human breast cancer, medulloblastoma, and renal cell carcinoma cell lines. The elevated level of HIF2α protein was in certain tumor cell types accompanied by downregulation of HIF1α protein levels, indicating that high Notch signaling may drive a HIF1α-to-HIF2α switch. At the transcriptome level, the presence of HIF2α was required for approximately 21% of all Notch-induced genes: among the 1062 genes that were upregulated by Notch in medulloblastoma cells during normoxia, upregulation was abrogated in 227 genes when HIF2α expression was knocked down by HIF2α siRNA. In conclusion, our data show that Notch signaling affects the hypoxic response via regulation of HIF2α, which may be important for future cancer therapies.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Hypoxia/genetics , Neoplasms/genetics , Receptors, Notch/genetics , Signal Transduction/genetics , A549 Cells , Animals , Cell Line, Tumor , Down-Regulation/genetics , Humans , MCF-7 Cells , Mice , RAW 264.7 Cells , Transcriptional Activation/genetics , Up-Regulation/genetics
11.
Nat Cell Biol ; 20(3): 332-343, 2018 03.
Article in English | MEDLINE | ID: mdl-29459780

ABSTRACT

The heterogeneity of exosomal populations has hindered our understanding of their biogenesis, molecular composition, biodistribution and functions. By employing asymmetric flow field-flow fractionation (AF4), we identified two exosome subpopulations (large exosome vesicles, Exo-L, 90-120 nm; small exosome vesicles, Exo-S, 60-80 nm) and discovered an abundant population of non-membranous nanoparticles termed 'exomeres' (~35 nm). Exomere proteomic profiling revealed an enrichment in metabolic enzymes and hypoxia, microtubule and coagulation proteins as well as specific pathways, such as glycolysis and mTOR signalling. Exo-S and Exo-L contained proteins involved in endosomal function and secretion pathways, and mitotic spindle and IL-2/STAT5 signalling pathways, respectively. Exo-S, Exo-L and exomeres each had unique N-glycosylation, protein, lipid, DNA and RNA profiles and biophysical properties. These three nanoparticle subsets demonstrated diverse organ biodistribution patterns, suggesting distinct biological functions. This study demonstrates that AF4 can serve as an improved analytical tool for isolating extracellular vesicles and addressing the complexities of heterogeneous nanoparticle subpopulations.


Subject(s)
Cell Fractionation/methods , Exosomes/metabolism , Nanoparticles , Neoplasms/metabolism , Proteins/metabolism , Animals , Biomarkers/metabolism , DNA/genetics , DNA/metabolism , Energy Metabolism , Exosomes/classification , Exosomes/genetics , Exosomes/pathology , Female , Glycomics , Glycosylation , HCT116 Cells , Humans , Melanoma, Experimental/genetics , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Metabolomics , Mice , Mice, Inbred C57BL , NIH 3T3 Cells , Neoplasms/genetics , Neoplasms/pathology , PC-3 Cells , Phenotype , Proteomics , RNA/genetics , RNA/metabolism , Signal Transduction , Tissue Distribution
12.
Blood ; 131(15): 1712-1719, 2018 04 12.
Article in English | MEDLINE | ID: mdl-29339402

ABSTRACT

Although an essential role for canonical Notch signaling in generation of hematopoietic stem cells in the embryo and in thymic T-cell development is well established, its role in adult bone marrow (BM) myelopoiesis remains unclear. Some studies, analyzing myeloid progenitors in adult mice with inhibited Notch signaling, implicated distinct roles of canonical Notch signaling in regulation of progenitors for the megakaryocyte, erythroid, and granulocyte-macrophage cell lineages. However, these studies might also have targeted other pathways. Therefore, we specifically deleted, in adult BM, the transcription factor recombination signal-binding protein J κ (Rbpj), through which canonical signaling from all Notch receptors converges. Notably, detailed progenitor staging established that canonical Notch signaling is fully dispensable for all investigated stages of megakaryocyte, erythroid, and myeloid progenitors in steady state unperturbed hematopoiesis, after competitive BM transplantation, and in stress-induced erythropoiesis. Moreover, expression of key regulators of these hematopoietic lineages and Notch target genes were unaffected by Rbpj deficiency in BM progenitor cells.


Subject(s)
Bone Marrow/metabolism , Erythropoiesis , Myelopoiesis , Receptors, Notch/metabolism , Signal Transduction , Stress, Physiological , Animals , Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics , Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , Mice , Mice, Transgenic , Receptors, Notch/genetics
13.
BMC Cancer ; 15: 311, 2015 Apr 25.
Article in English | MEDLINE | ID: mdl-25907971

ABSTRACT

BACKGROUND: Deregulated Notch signaling is linked to a variety of tumors and it is therefore important to learn more about the frequency and distribution of Notch mutations in a tumor context. METHODS: In this report, we use data from the recently developed Cancer Cell Line Encyclopedia to assess the frequency and distribution of Notch mutations in a large panel of cancer cell lines in silico. RESULTS: Our results show that the mutation frequency of Notch receptor and ligand genes is at par with that for established oncogenes and higher than for a set of house-keeping genes. Mutations were found across all four Notch receptor genes, but with notable differences between protein domains, mutations were for example more prevalent in the regions encoding the LNR and PEST domains in the Notch intracellular domain. Furthermore, an in silico estimation of functional impact showed that deleterious mutations cluster to the ligand-binding and the intracellular domains of NOTCH1. For most cell line groups, the mutation frequency of Notch genes is higher than in associated primary tumors. CONCLUSIONS: Our results shed new light on the spectrum of Notch mutations after in vitro culturing of tumor cells. The higher mutation frequency in tumor cell lines indicates that Notch mutations are associated with a growth advantage in vitro, and thus may be considered to be driver mutations in a tumor cell line context.


Subject(s)
Gene Frequency , Receptors, Notch/genetics , Cell Line, Tumor , DNA Copy Number Variations , DNA Mutational Analysis , Genes, Essential , Humans , Mutation, Missense
14.
Cell Res ; 24(4): 433-50, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24662486

ABSTRACT

Activation of Notch signaling requires intracellular routing of the receptor, but the mechanisms controlling the distinct steps in the routing process is poorly understood. We identify PKCζ as a key regulator of Notch receptor intracellular routing. When PKCζ was inhibited in the developing chick central nervous system and in cultured myoblasts, Notch-stimulated cells were allowed to undergo differentiation. PKCζ phosphorylates membrane-tethered forms of Notch and regulates two distinct routing steps, depending on the Notch activation state. When Notch is activated, PKCζ promotes re-localization of Notch from late endosomes to the nucleus and enhances production of the Notch intracellular domain, which leads to increased Notch activity. In the non-activated state, PKCζ instead facilitates Notch receptor internalization, accompanied with increased ubiquitylation and interaction with the endosomal sorting protein Hrs. Collectively, these data identify PKCζ as a key regulator of Notch trafficking and demonstrate that distinct steps in intracellular routing are differentially modulated depending on Notch signaling status.


Subject(s)
Protein Kinase C/physiology , Receptor, Notch1/metabolism , Amino Acid Sequence , Animals , Cells, Cultured , Chick Embryo , HEK293 Cells , HeLa Cells , Humans , Mice , Molecular Sequence Data , Protein Transport , Receptor, Notch1/genetics , Sequence Homology, Amino Acid , Signal Transduction/genetics
15.
Proc Natl Acad Sci U S A ; 108(46): 18814-9, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-22065781

ABSTRACT

A switch from oxidative phosphorylation to glycolysis is frequently observed in cancer cells and is linked to tumor growth and invasion, but the underpinning molecular mechanisms controlling the switch are poorly understood. In this report we show that Notch signaling is a key regulator of cellular metabolism. Both hyper- and hypoactivated Notch induce a glycolytic phenotype in breast tumor cells, although by distinct mechanisms: hyperactivated Notch signaling leads to increased glycolysis through activation of the phosphatidylinositol 3-kinase/AKT serine/threonine kinase pathway, whereas hypoactivated Notch signaling attenuates mitochondrial activity and induces glycolysis in a p53-dependent manner. Despite the fact that cells with both hyper- and hypoactivated Notch signaling showed enhanced glycolysis, only cells with hyperactivated Notch promoted aggressive tumor growth in a xenograft mouse model. This phenomenon may be explained by that only Notch-hyperactivated, but not -hypoactivated, cells retained the capacity to switch back to oxidative phosphorylation. In conclusion, our data reveal a role for Notch in cellular energy homeostasis, and show that Notch signaling is required for metabolic flexibility.


Subject(s)
Gene Expression Regulation, Neoplastic , Receptors, Notch/metabolism , Animals , Glycolysis , Homeostasis , Humans , Mice , Mitochondria/metabolism , Models, Biological , Neoplasm Transplantation , Oxidative Phosphorylation , Oxygen/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Signal Transduction , Tumor Suppressor Protein p53/metabolism
16.
J Cell Sci ; 123(Pt 17): 2931-42, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20720151

ABSTRACT

In Notch signaling, cell-bound ligands activate Notch receptors on juxtaposed cells, but the relationship between ligand endocytosis, ubiquitylation and ligand-receptor interaction remains poorly understood. To study the specific role of ligand-receptor interaction, we identified a missense mutant of the Notch ligand Jagged1 (Nodder, Ndr) that failed to interact with Notch receptors, but retained a cellular distribution that was similar to wild-type Jagged1 (Jagged1(WT)) in the absence of active Notch signaling. Both Jagged1(WT) and Jagged1(Ndr) interacted with the E3 ubiquitin ligase Mind bomb, but only Jagged1(WT) showed enhanced ubiquitylation after co-culture with cells expressing Notch receptor. Cells expressing Jagged1(WT), but not Jagged1(Ndr), trans-endocytosed the Notch extracellular domain (NECD) into the ligand-expressing cell, and NECD colocalized with Jagged1(WT) in early endosomes, multivesicular bodies and lysosomes, suggesting that NECD is routed through the endocytic degradation pathway. When coexpressed in the same cell, Jagged1(Ndr) did not exert a dominant-negative effect over Jagged1(WT) in terms of receptor activation. Finally, in Jag1(Ndr/Ndr) mice, the ligand was largely accumulated at the cell surface, indicating that engagement of the Notch receptor is important for ligand internalization in vivo. In conclusion, the interaction-dead Jagged1(Ndr) ligand provides new insights into the specific role of receptor-ligand interaction in the intracellular trafficking of Notch ligands.


Subject(s)
Calcium-Binding Proteins/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Receptors, Notch/metabolism , Animals , Calcium-Binding Proteins/genetics , Endocytosis , Female , Gene Knockdown Techniques , HEK293 Cells , Humans , Immunohistochemistry , Intercellular Signaling Peptides and Proteins/genetics , Jagged-1 Protein , Ligands , Male , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mutation, Missense , Serrate-Jagged Proteins , Signal Transduction , Transfection , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...