Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biomimetics (Basel) ; 8(2)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37092406

ABSTRACT

Memory is an essential element in information processing devices. We investigated a network formed by just three interacting nodes representing continuously stirred tank reactors (CSTRs) in which the glycolytic reaction proceeds as a potential realization of a chemical memory unit. Our study is based on the 2-variable computational model of the reaction. The model parameters were selected such that the system has a stable limit cycle and several distinct, discrete Turing patterns characterized by stationary concentrations at the nodes. In our interpretation, oscillations represent a blank memory unit, and Turing patterns code information. The considered memory can preserve information on one of six different symbols. The time evolution of the nodes was individually controlled by the inflow of ATP. We demonstrate that information can be written with a simple and short perturbation of the inflow. The perturbation applies to only one or two nodes, and it is symbol specific. The memory can be erased with identical inflow perturbation applied to all nodes. The presented idea of pattern-coded memory applies to other reaction networks that allow for discrete Turing patterns. Moreover, it hints at the experimental realization of memory in a simple system with the glycolytic reaction.

2.
Front Chem ; 8: 559650, 2020.
Article in English | MEDLINE | ID: mdl-33195048

ABSTRACT

We examine dynamical switching among discrete Turing patterns that enable chemical computing performed by mass-coupled reaction cells arranged as arrays with various topological configurations: three coupled cells in a cyclic array, four coupled cells in a linear array, four coupled cells in a cyclic array, and four coupled cells in a branched array. Each cell is operating as a continuous stirred tank reactor, within which the glycolytic reaction takes place, represented by a skeleton inhibitor-activator model where ADP plays the role of activator and ATP is the inhibitor. The mass coupling between cells is assumed to be operating in three possible transport regimes: (i) equal transport coefficients of the inhibitor and activator (ii) slightly faster transport of the activator, and (iii) strongly faster transport of the inhibitor. Each cellular array is characterized by two pairs of tunable parameters, the rate coefficients of the autocatalytic and inhibitory steps, and the transport coefficients of the coupling. Using stability and bifurcation analysis we identified conditions for occurrence of discrete Turing patterns associated with non-uniform stationary states. We found stable symmetric and/or asymmetric discrete Turing patterns coexisting with stable uniform periodic oscillations. To switch from one of the coexisting stable regimes to another we use carefully targeted perturbations, which allows us to build systems of logic gates specific to each topological type of the array, which in turn enables to perform advanced modes of chemical computing. By combining chemical computing techniques in the arrays with glycolytic excitable channels, we propose a cellular assemblage design for advanced chemical computing.

3.
Phys Chem Chem Phys ; 21(17): 8619-8622, 2019 Apr 24.
Article in English | MEDLINE | ID: mdl-30985845

ABSTRACT

Herein, we present direct experimental evidence of pH oscillatory dynamics in the urea-urease enzymatic reaction conducted in a continuous reactor-membrane-reservoir system. Our results are consistent with earlier model predictions requiring differential transport of H+ and substrate. We report oscillations with periods in hundreds of seconds and the amplitude of ∼0.1 pH units.


Subject(s)
Urea/chemistry , Urease/chemistry , Gels/chemistry , Hydrogen-Ion Concentration , Kinetics , Membranes, Artificial , Models, Chemical
4.
J Phys Chem A ; 121(40): 7518-7523, 2017 Oct 12.
Article in English | MEDLINE | ID: mdl-28898579

ABSTRACT

We provide experimental evidence of periodic and aperiodic oscillations in an enzymatic system of glucose oxidase-catalase in a continuous-flow stirred reactor coupled by a membrane with a continuous-flow reservoir supplied with hydrogen peroxide. To describe such dynamics, we formulate a detailed mechanism based on partial results in the literature. Finally, we introduce a novel method for estimation of unknown kinetic parameters. The method is based on matching experimental data at an oscillatory instability with stoichiometric constraints of the mechanism formulated by applying the stability theory of reaction networks. This approach has been used to estimate rate coefficients in the catalase part of the mechanism. Remarkably, model simulations show good agreement with the observed oscillatory dynamics, including apparently chaotic intermittent behavior. Our method can be applied to any reaction system with an experimentally observable dynamical instability.


Subject(s)
Bacterial Proteins/chemistry , Catalase/chemistry , Glucose Oxidase/chemistry , Animals , Aspergillus niger/enzymology , Cattle , Glucose/chemistry , Hydrogen Peroxide/chemistry , Kinetics , Models, Chemical , Oxygen/chemistry
5.
PLoS One ; 12(6): e0178457, 2017.
Article in English | MEDLINE | ID: mdl-28636629

ABSTRACT

Prompted by the recent growing evidence of oscillatory behavior involving MAPK cascades we present a systematic approach of analyzing models and elucidating the nature of biochemical oscillations based on reaction network theory. In particular, we formulate a minimal biochemically consistent mass action subnetwork of the Huang-Ferrell model of the MAPK signalling that provides an oscillatory response when a parameter controlling the activation of the top-tier kinase is varied. Such dynamics are either intertwined with or separated from the earlier found bistable/hysteretic behavior in this model. Using the theory of stability of stoichiometric networks, we reduce the original MAPK model, convert kinetic to convex parameters and examine those properties of the minimal subnetwork that underlie the oscillatory dynamics. We also use the methods of classification of chemical oscillatory networks to explain the rhythmic behavior in physicochemical terms, i.e., we identify of the role of individual biochemical species in positive and negative feedback loops and describe their coordinated action leading to oscillations. Our approach provides an insight into dynamics without the necessity of knowing rate coefficients and thus is useful prior the statistical evaluation of parameters.


Subject(s)
Computer Simulation , Feedback, Physiological , MAP Kinase Signaling System , Models, Theoretical , Algorithms , Humans , Kinetics
6.
J Chem Phys ; 139(16): 164108, 2013 Oct 28.
Article in English | MEDLINE | ID: mdl-24182005

ABSTRACT

We study a model system of three diffusively coupled reaction cells arranged in a linear array that display Turing patterns with special focus on the case of equal coupling strength for all components. As a suitable model reaction we consider a two-variable core model of glycolysis. Using numerical continuation and bifurcation techniques we analyze the dependence of the system's steady states on varying rate coefficient of the recycling step while the coupling coefficients of the inhibitor and activator are fixed and set at the ratios 100:1, 1:1, and 4:5. We show that stable Turing patterns occur at all three ratios but, as expected, spontaneous transition from the spatially uniform steady state to the spatially nonuniform Turing patterns occurs only in the first case. The other two cases possess multiple Turing patterns, which are stabilized by secondary bifurcations and coexist with stable uniform periodic oscillations. For the 1:1 ratio we examine modular spatiotemporal perturbations, which allow for controllable switching between the uniform oscillations and various Turing patterns. Such modular perturbations are then used to construct chemical computing devices utilizing the multiple Turing patterns. By classifying various responses we propose: (a) a single-input resettable sensor capable of reading certain value of concentration, (b) two-input and three-input memory arrays capable of storing logic information, (c) three-input, three-output logic gates performing combinations of logical functions OR, XOR, AND, and NAND.

SELECTION OF CITATIONS
SEARCH DETAIL