Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(4): e0294823, 2024.
Article in English | MEDLINE | ID: mdl-38640099

ABSTRACT

BACKGROUND: Despite eradication efforts, ~135,000 African children sustained brain injuries as a result of central nervous system (CNS) malaria in 2021. Newer antimalarial medications rapidly clear peripheral parasitemia and improve survival, but mortality remains high with no associated decline in post-malaria neurologic injury. A randomized controlled trial of aggressive antipyretic therapy with acetaminophen and ibuprofen (Fever RCT) for malarial fevers being conducted in Malawi and Zambia began enrollment in 2019. We propose to use neuroimaging in the context of the RCT to further evaluate neuroprotective effects of aggressive antipyretic therapy. METHODS: This observational magnetic resonance imaging (MRI) ancillary study will obtain neuroimaging and neurodevelopmental and behavioral outcomes in children previously enrolled in the Fever RCT at 1- and 12-months post discharge. Analysis will compare the odds of any brain injury between the aggressive antipyretic therapy and usual care groups based upon MRI structural abnormalities. For children unable to undergo imaging without deep sedation, neurodevelopmental and behavioral outcomes will be used to identify brain injury. DISCUSSION: Neuroimaging is a well-established, valid proxy for neurological outcomes after brain injury in pediatric CNS malaria. This MRI ancillary study will add value to the Fever RCT by determining if treatment with aggressive antipyretic therapy is neuroprotective in CNS malaria. It may also help elucidate the underlying mechanism(s) of neuroprotection and expand upon FEVER RCT safety assessments.


Subject(s)
Antipyretics , Brain Injuries , Malaria , Humans , Child , Antipyretics/therapeutic use , Aftercare , Patient Discharge , Fever/complications , Fever/drug therapy , Fever/prevention & control , Magnetic Resonance Imaging , Randomized Controlled Trials as Topic , Observational Studies as Topic
2.
EJHaem ; 5(1): 3-10, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38406536

ABSTRACT

The greatest burden of sickle cell anemia (SCA) globally occurs in sub-Saharan Africa, where significant morbidity and mortality occur secondary to SCA-induced vasculopathy and stroke. Transcranial Doppler ultrasound (TCD) can grade the severity of vasculopathy, with disease modifying therapy resulting in stroke reduction in high-risk children. However, TCD utilization for vasculopathy detection in African children with SCA remains understudied. The objective was to perform a prospective, observational study of TCD findings in a cohort of children with SCA from the Democratic Republic of the Congo, Zambia, and Malawi. A total of 770 children aged 2-17 years without prior stroke underwent screening TCD. A study was scored as low risk when the time-averaged maximum of the mean (TAMMX) in the middle cerebral artery or terminal internal carotid artery was <170 cm/s but >50 cm/s, conditional risk when 170-200 cm/s, and high risk when >200 cm/s. Low-risk studies were identified in 604 children (78%), conditional risk in 129 children (17%), and high risk in three children (0.4%). Additionally, 34 (4%) were scored as having an unknown risk study (TAMMX <50 cm/s). Over the course of 15 months of follow-up, 17 children (2.2%) developed new neurologic symptoms (six with low-risk studies, seven with conditional risk, and four with unknown risk). African children with SCA in this cohort had a low rate of high-risk TCD screening results, even in those who developed new neurologic symptoms. Stroke in this population may be multifactorial with vasculopathy representing only one determinant. The development of a sensitive stroke prediction bundle incorporating relevant elements may help to guide preventative therapies in high-risk children.

3.
medRxiv ; 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37986869

ABSTRACT

Background: Despite eradication efforts, ~135,000 African children sustained brain injuries as a result of central nervous system (CNS) malaria in 2021. Newer antimalarial medications rapidly clear peripheral parasitemia and improve survival, but mortality remains high with no associated decline in post-malaria neurologic injury. A randomized controlled trial of aggressive antipyretic therapy with acetaminophen and ibuprofen (Fever RCT) for malarial fevers being conducted in Malawi and Zambia began enrollment in 2019. We propose to use neuroimaging in the context of the RCT to further evaluate neuroprotective effects of aggressive antipyretic therapy. Methods: This observational magnetic resonance imaging (MRI) ancillary study will obtain neuroimaging and neurodevelopmental and behavioral outcomes in children previously enrolled in the Fever RCT at 1- and 12-months post discharge. Analysis will compare the odds of any brain injury between the aggressive antipyretic therapy and usual care groups based upon MRI structural abnormalities. For children unable to undergo imaging without deep sedation, neurodevelopmental and behavioral outcomes will be used to identify brain injury. Discussion: Neuroimaging is a well-established, valid proxy for neurological outcomes after brain injury in pediatric CNS malaria. This MRI ancillary study will add value to the Fever RCT by determining if treatment with aggressive antipyretic therapy is neuroprotective in CNS malaria. It may also help elucidate the underlying mechanism(s) of neuroprotection and expand upon FEVER RCT safety assessments.

4.
Heliyon ; 9(4): e15419, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37128324

ABSTRACT

Background and purpose: Transcranial doppler ultrasound (TCD) is a tool that diagnoses and monitors pathophysiological changes to the cerebrovasculature. As cerebral blood flow velocities (CBFVs) increase throughout childhood, interpretation of TCD examinations in pediatrics requires comparison to age matched normative data. Large cohorts of healthy children have not been examined to develop these reference values in any population. There is a complete absence of normative values in African children where, due to lack of alternate neuroimaging techniques, utilization of TCD is rapidly emerging. Materials and methods: A prospective study of 710 healthy African children 3 months-15 years was performed. Demographics, vital signs, and hemoglobin values were recorded. Participants underwent a complete, non-imaging TCD examination. Systolic (Vs), diastolic (Vd), and mean (Vm) flow velocities and pulsatility index (PI) were calculated by the instrument for each measurement. Results: Vs, Vd, and Vm increased through early childhood in all vessels, with the highest CBFVs identified in children 5-5.9 years. There were few significant gender differences in CBFVs in any vessels in any age group. No correlations between blood pressure or hemoglobin and CBFVs were identified. Children in the youngest age groups had CBFVs similar to those previously published, whereas nearly every vessel in children ≥3 years had significantly lower Vs, Vd, and Vm. Conclusions: For the first time, reference TCD values for African children are established. Utilization of these CBFVs in the interpretation of TCD examinations in this population will improve the overall accuracy of TCD as a clinical tool on the continent.

5.
Malar J ; 21(1): 310, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36316704

ABSTRACT

BACKGROUND: Recent research has established that acute kidney injury (AKI) is a common problem in severe paediatric malaria. Limited access to kidney diagnostic studies in the low resources settings where malaria is common has constrained research on this important problem. METHODS: Enrolment data from an ongoing clinical trial of antipyretics in children with central nervous system (CNS) malaria, CNS malaria being malaria with seizures or coma, was used to identify risk factors for AKI at presentation. Children 2-11 years old with CNS malaria underwent screening and enrollment assessments which included demographic and anthropomorphic data, clinical details regarding the acute illness, and laboratory studies including creatinine (Cr), quantitative parasite count (qPC), quantitative histidine rich protein 2 (HRP2), lactate, and bilirubin levels. Children with a screening Cr > 106 µmol/l were excluded from the study due to the potential nephrotoxic effects of the study drug. To identify risk factors for AKI at the time of admission, children who were enrolled in the study were categorized as having AKI using estimates of their baseline (i.e. before this acute illness) kidney function and creatinine at enrollment applying the Kidney Disease: Improving Global Outcome (KDIGO) 2012 guidelines. Logistic regressions and a multivariate model were used to identify clinical and demographic risk factors for AKI at presentation among those children enrolled in the study. RESULTS: 465 children were screened, 377 were age-appropriate with CNS malaria, 22 (5.8%) were excluded due to Cr > 106 µmol/l, and 209 were enrolled. Among the 209, AKI using KDIGO criteria was observed in 134 (64.1%). One child required dialysis during recovery. Risk factors for AKI in both the logistic regression and multivariate models included: hyperpyrexia (OR 3.36; 95% CI 1.39-8.12) and age with older children being less likely to have AKI (OR 0.72; 95% CI 0.62-0.84). CONCLUSION: AKI is extremely common among children presenting with CNS malaria. Hyperpyrexia with associated dehydration may contribute to the AKI or may simply be a marker for a more inflammatory systemic response that is also affecting the kidney. Appropriate fluid management in children with CNS malaria and AKI may be challenging since generous hydration to support kidney recovery could worsen malaria-induced cerebral oedema in this critically ill population. Trial registration https://clinicaltrials.gov/ct2/show/NCT03399318.


Subject(s)
Acute Kidney Injury , Malaria , Child , Child, Preschool , Humans , Acute Disease , Acute Kidney Injury/epidemiology , Acute Kidney Injury/etiology , Acute Kidney Injury/diagnosis , Case-Control Studies , Central Nervous System , Creatinine , Malaria/diagnosis , Risk Factors
6.
BMJ Open ; 12(7): e062948, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35851014

ABSTRACT

INTRODUCTION: Malaria affecting the central nervous system (CM) is a major contributor to paediatric epilepsy in resource-poor settings, with 10%-16% of survivors developing epilepsy within 2 years of infection. Despite high risk for post-malaria epilepsy (PME), biomarkers indicating which CM survivors will develop epilepsy are absent. Such biomarkers are essential to identify those at highest risk who might benefit most from close surveillance and/or preventive treatments. Electroencephalography (EEG) contains signals (specifically gamma frequency activity), which are correlated with higher risk of PME and provide a biomarker for the development of epilepsy. We propose to study the sensitivity of quantitative and qualitative EEG metrics in predicting PME, and the potential increased sensitivity of this measure with additional clinical metrics. Our goal is to develop a predictive PME index composed of EEG and clinical history metrics that are highly feasible to obtain in low-resourced regions. METHODS AND ANALYSES: This prospective observational study being conducted in Eastern Zambia will recruit 250 children aged 6 months to 11 years presenting with acute CM and follow them for two years. Children with pre-existing epilepsy diagnoses will be excluded. Outcome measures will include qualitative and quantitative analysis of routine EEG recordings, as well as clinical metrics in the acute and subacute period, including histidine-rich protein 2 levels of parasite burden, depth and length of coma, presence and severity of acute seizures, presence of hypoglycaemia, maximum temperature and 1-month post-CM neurodevelopmental assessment scores. We will test the performance of these EEG and clinical metrics in predicting development of epilepsy through multivariate logistic regression analyses. ETHICS AND DISSEMINATION: This study has been approved by the Boston Children's Hospital Institutional Review Board, University of Zambia Biomedical Research Ethics Committee, and National Health Research Authority of Zambia. Results will be disseminated locally in Zambia followed by publication in international, open access, peer-reviewed journals when feasible.


Subject(s)
Epilepsy , Malaria, Cerebral , Biomarkers , Child , Electroencephalography , Epilepsy/diagnosis , Epilepsy/etiology , Humans , Malaria, Cerebral/complications , Malaria, Cerebral/diagnosis , Seizures , Zambia/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...