Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Malar J ; 22(1): 4, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36604693

ABSTRACT

BACKGROUND: Since 2013, the National Malaria Control Programme in mainland Tanzania and the Zanzibar Malaria Elimination Programme have implemented mass insecticide-treated net (ITN) distribution campaigns, routine ITN distribution to pregnant women and infants, and continuous distribution through primary schools (mainland) and community leaders (Zanzibar) to further malaria control efforts. Mass campaigns are triggered when ITN access falls below 40%. In this context, there is a need to monitor ITN access annually to assess whether it is below threshold and inform quantification of ITNs for the following year. Annual estimates of access are needed at the council level to inform programmatic decision-making. METHODS: An age-structured stock and flow model was used to predict annual net crops from council-level distribution data in Tanzania from 2012 to 2020 parameterized with a Tanzania-specific net median lifespan of 2.15 years. Annual nets-per-capita (NPC) was calculated by dividing each annual net crop by mid-year council projected population. A previously fit nonparametric conditional quantile function for the proportion of the population with access to an ITN (ITN access) as a function of NPC was used to predict ITN access at the council level based on the predicted NPC value. These estimates were compared to regional-level ITN access from large household surveys. RESULTS: For regions with the same ITN strategy for all councils, predicted council-level ITN access was consistent with regional-level survey data for 79% of councils. Regions where ITN strategy varied by council had regional estimates of ITN access that diverged from the council-specific estimates. Predicted ITN access reached 60% only when "nets issued as a percentage of the council population" (NPP) exceeded 15%, and approached 80% ITN access when NPP was at or above 20%. CONCLUSION: Modelling ITN access with country-specific net decay rates, council-level population, and ITN distribution data is a promising approach to monitor ITN coverage sub-regionally and between household surveys in Tanzania and beyond.


Subject(s)
Insecticide-Treated Bednets , Insecticides , Malaria , Child, Preschool , Female , Humans , Pregnancy , Malaria/prevention & control , Mosquito Control , Tanzania
2.
Malar J ; 21(1): 379, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36496423

ABSTRACT

BACKGROUND: Threats to maintaining high population access with effective bed nets persist due to errors in quantification, bed net wear and tear, and inefficiencies in distribution activities. Monitoring bed net coverage is therefore critical, but usually occurs every 2-3 years through expensive, large-scale household surveys. Mobile phone-based survey methodologies are emerging as an alternative to household surveys and can provide rapid estimates of coverage, however, little research on varied sampling approaches has been conducted in sub-Saharan Africa. METHODS: A nationally and regionally representative cross-sectional mobile phone survey was conducted in early 2021 in Tanzania with focus on bed net ownership and access. Half the target sample was contacted through a random digit dial methodology (n = 3500) and the remaining half was reached through a voluntary opt-in respondent pool (n = 3500). Both sampling approaches used an interactive voice response survey. Standard RBM-MERG bed net indicators and AAPOR call metrics were calculated. In addition, the results of the two sampling approaches were compared. RESULTS: Population access (i.e., the percent of the population that could sleep under a bed net, assuming one bed net per two people) varied from a regionally adjusted low of 48.1% (Katavi) to a high of 65.5% (Dodoma). The adjusted percent of households that had a least one bed net ranged from 54.8% (Pemba) to 75.5% (Dodoma); the adjusted percent of households with at least one bed net per 2 de facto household population ranged from 35.9% (Manyara) to 55.7% (Dodoma). The estimates produced by both sampling approaches were generally similar, differing by only a few percentage points. An analysis of differences between estimates generated from the two sampling approaches showed minimal bias when considering variation across the indicator for households with at least one bed net per two de facto household population. CONCLUSION: The results generated by this survey show that overall bed net access in the country appears to be lower than target thresholds. The results suggest that bed net distribution is needed in large sections of the country to ensure that coverage levels remain high enough to sustain protection against malaria for the population.


Subject(s)
Cell Phone , Insecticide-Treated Bednets , Humans , Mosquito Control/methods , Cross-Sectional Studies , Tanzania , Surveys and Questionnaires
3.
Malar J ; 21(1): 246, 2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36028866

ABSTRACT

BACKGROUND: Since 2013, the National Malaria Control Programme in mainland Tanzania has deployed annual distributions of insecticide-treated nets (ITNs) through primary schools to maintain ITN access and use. This School Net Programme (SNP) is slated to be used throughout mainland Tanzania by 2023. This modelling study projects ITN access under different ITN distribution strategies and quantification approaches. METHODS: A stock and flow model with a Tanzania-specific ITN decay rate was used to calculate annual net crops for four different ITN distribution strategies, varying quantification approaches within each strategy. Annual nets-per-capita (NPC) was derived from net crop and a standardized population projection. Nonparametric conditional quartile functions for the proportion of the population with access to an ITN (ITN access) as a function of NPC were used to predict ITN access and its variability. The number of ITNs required under the varying quantification approaches for the period 2022-2030 was calculated. RESULTS: Annual SNP quantified using a "population times 15%" approach maintained ITN access between 80 and 90%, when combined with reproductive and child health (RCH) ITN distribution, requiring 133.2 million ITNs. The same strategy quantified with "population times 22%" maintained ITN access at or above 90%, requiring 175.5 million ITNs. Under 5-year mass campaigns with RCH distribution for pregnant women and infants, ITN access reached 90% post-campaign and fell to 27-35% in the 4th year post-campaign, requiring 120.5 million ITNs over 8 years. 3-yearly mass campaigns with RCH reached 100% ITN access post-campaign and fell to 70% in the 3rd year post-campaign, requiring 154.4 million ITNs. CONCLUSION: Given an ITN retention time in Tanzania of 2.15 years, the model predicts that mass campaigns conducted every 3 years in mainland Tanzania will not maintain ITN access at target levels of 80%, even with strong RCH channels. Mainland Tanzania can however expect to maintain ITN access at 80% or above by quantifying SNP using "population × 15%", in addition to RCH ITN delivery. This strategy requires 14% fewer ITNs than a 3-year campaign strategy while providing more consistent ITN coverage. Meeting the targets of 80% ITN use would require maintaining 90% ITN access, achievable using a "population times 22%" quantification approach for SNP.


Subject(s)
Insecticide-Treated Bednets , Insecticides , Malaria , Child , Female , Humans , Infant , Mosquito Control , Pregnancy , Schools , Tanzania
SELECTION OF CITATIONS
SEARCH DETAIL
...