Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 12001, 2021 06 07.
Article in English | MEDLINE | ID: mdl-34099817

ABSTRACT

Staphylococcus epidermidis (S. epidermidis) ATCC 12228 was incubated with 2% polyethylene glycol (PEG)-8 Laurate to yield electricity which was measured by a voltage difference between electrodes. Production of electron was validated by a Ferrozine assay. The anti-Cutibacterium acnes (C. acnes) activity of electrogenic S. epidermidis was assessed in vitro and in vivo. The voltage change (~ 4.4 mV) reached a peak 60 min after pipetting S. epidermidis plus 2% PEG-8 Laurate onto anodes. The electricity produced by S. epidermidis caused significant growth attenuation and cell lysis of C. acnes. Intradermal injection of C. acnes and S. epidermidis plus PEG-8 Laurate into the mouse ear considerably suppressed the growth of C. acnes. This suppressive effect was noticeably reversed when cyclophilin A of S. epidermidis was inhibited, indicating the essential role of cyclophilin A in electricity production of S. epidermidis against C. acnes. In summary, we demonstrate for the first time that skin S. epidermidis, in the presence of PEG-8 Laurate, can mediate cyclophilin A to elicit an electrical current that has anti-C. acnes effects. Electricity generated by S. epidermidis may confer immediate innate immunity in acne lesions to rein in the overgrowth of C. acnes at the onset of acne vulgaris.


Subject(s)
Acne Vulgaris/therapy , Antibiosis/genetics , Bacterial Proteins/genetics , Cyclophilin A/genetics , Propionibacteriaceae/pathogenicity , Staphylococcus epidermidis/drug effects , Acne Vulgaris/microbiology , Animals , Bacterial Proteins/metabolism , Coculture Techniques , Culture Media/chemistry , Culture Media/pharmacology , Cyclophilin A/metabolism , Disease Models, Animal , Ear/microbiology , Electricity , Electrodes , Female , Gene Expression , Laurates/pharmacology , Mice , Mice, Inbred ICR , Polyethylene Glycols/pharmacology , Propionibacteriaceae/growth & development , Skin/microbiology , Staphylococcus epidermidis/physiology , Surface-Active Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL