Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 62(23): e202301209, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37017133

ABSTRACT

With over 60 % of protein-protein interfaces featuring an α-helix, the use of α-helix mimetics as inhibitors of these interactions is a prevalent therapeutic strategy. However, methods to control the conformation of mimetics, thus enabling maximum efficacy, can be restrictive. Alternatively, conformation can be controlled through the introduction of destabilizing syn-pentane interactions. This tactic, which is often adopted by Nature, is not a common feature of lead optimization owing to the significant synthetic effort required. Through assembly-line synthesis with NMR and computational analysis, we have shown that alternating syn-anti configured contiguously substituted hydrocarbons, by avoiding syn-pentane interactions, adopt well-defined conformations that present functional groups in an arrangement that mimics the α-helix. The design of a p53 mimetic that binds to Mdm2 with moderate to good affinity, demonstrates the therapeutic promise of these scaffolds.


Subject(s)
Pentanes , Proteins , Models, Molecular , Protein Conformation, alpha-Helical , Proteins/chemistry
2.
Nat Chem ; 15(2): 248-256, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36424454

ABSTRACT

Polyketide natural products often contain common repeat motifs, for example, propionate, acetate and deoxypropionate, and so can be synthesized by iterative processes. We report here a highly efficient iterative strategy for the synthesis of polyacetates based on boronic ester homologation that does not require functional group manipulation between iterations. This process involves sequential asymmetric diboration of a terminal alkene, forming a 1,2-bis(boronic ester), followed by regio- and stereoselective homologation of the primary boronic ester with a butenyl metallated carbenoid to generate a 1,3-bis(boronic ester). Each transformation independently controls the stereochemical configuration, making the process highly versatile, and the sequence can be iterated prior to stereospecific oxidation of the 1,3-polyboronic ester to yield the 1,3-polyol. This methodology has been applied to a 14-step synthesis of the oxopolyene macrolide bahamaolide A, and the versatility of the 1,3-polyboronic esters has been demonstrated in various stereospecific transformations, leading to polyalkenes, -alkynes, -ketones and -aromatics with full stereocontrol.

3.
J Am Chem Soc ; 143(40): 16682-16692, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34590479

ABSTRACT

Conformationally controlled flexible molecules are ideal for applications in medicine and materials, where shape matters but an ability to adapt to multiple and changing environments is often required. The conformation of flexible hydrocarbon chains bearing contiguous methyl substituents is controlled through the avoidance of syn-pentane interactions: alternating syn-anti isomers adopt a linear conformation while all-syn isomers adopt a helical conformation. From a simple diamond lattice analysis, larger substituents, which would be required for most potential applications, result in significant and unavoidable syn-pentane interactions, suggesting substantially reduced conformational control. Through a combination of computation, synthesis, and NMR analysis, we have identified a selection of substitution patterns that allow large groups to be incorporated on conformationally controlled linear and helical hydrocarbon chains. Surprisingly, when the methyl substituents of alternating syn-anti hydrocarbons are replaced with acetoxyethyl groups, the main chain of almost 95% of the population of molecules adopt a linear conformation. Here, the side chains adopt nonideal eclipsed conformations with the main chain, thus minimizing syn-pentane interactions. In the case of all-syn hydrocarbons, concurrent removal of some methyl groups on the main chain adjacent to the large substituents is required to maintain a high population of molecules adopting a helical conformation. This information can now be used to design flexible hydrocarbon chains displaying functional groups in a defined relative orientation for multivalent binding or cooperative reactivity, for example, in targeting the interfaces defined by disease-relevant protein-protein interactions.


Subject(s)
Hydrocarbons
4.
Nat Chem ; 12(5): 475-480, 2020 05.
Article in English | MEDLINE | ID: mdl-32123339

ABSTRACT

Odd and even homologues of some n-alkane-based systems are known to exhibit notably different trends in solid-state properties; a well-known illustration is the zigzag plot of their melting point versus chain length. Odd-even effects in the solid state often arise from intermolecular interactions that involve fully extended molecules. These effects have also been observed in less condensed phases, such as self-assembled monolayers; however, the origins of these effects in such systems can be difficult to determine. Here we combined NMR and computational analysis to show that all-syn contiguously methyl-substituted hydrocarbons, with chain lengths from C6 to C11, exhibit a dramatic odd-even effect in helical propensity. The even- and odd-numbered hydrocarbons populate regular and less-controlled helical conformations, respectively. This knowledge will guide the design of helical hydrocarbons as rigid scaffolds or as hydrophobic components in soft materials.

5.
Angew Chem Int Ed Engl ; 59(3): 1187-1191, 2020 01 13.
Article in English | MEDLINE | ID: mdl-31710748

ABSTRACT

Stereogenic trifluoromethyl-substituted carbon centers are highly sought-after moieties in pharmaceutical and agrochemical discovery. Here, we show that lithiation-borylation reactions of 2-trifluoromethyl oxirane give densely functionalized and highly versatile trifluoromethyl-substituted α-tertiary boronic esters. The intermediate boronate complexes undergo the desired 1,2-rearrangement of the carbon-based group with complete retentive stereospecificity, a process that was only observed in non-polar solvents in the presence of TESOTf. Although the trifluoromethyl group adversely affects subsequent transformations of the α-boryl group, Zweifel olefinations provide trifluoromethyl-bearing quaternary stereocenters substituted with alkenes, alkynes and ketones.

6.
J Org Chem ; 84(3): 1247-1256, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30602119

ABSTRACT

The identification and understanding of structure-activity relationships is vital for rational catalyst design. A kinetic study of the hydrogen-deuterium exchange reaction of cyclohexanone in aqueous solution, as catalyzed by proline derivatives, has revealed valuable structure-activity relationships. In phosphate-buffered solution, cis-4-fluoroproline is more active than the trans isomer, a distinction that appears to originate from a destabilizing interaction between the fluorine atom and phosphate anion during general acid-catalyzed dehydration of the carbinolamine intermediate. trans-4-Ammoniumprolines are exceptionally active catalysts owing to favorable Coulombic interactions involving the ammonium group and the alkoxide moiety formed upon 1,2-addition of the proline derivative to the ketone. These results could be used for the optimization of proline catalysts, especially in transformations where the formation of the putative iminium ion is rate-limiting.


Subject(s)
Anions/chemistry , Deuterium/chemistry , Fluorine/chemistry , Ketones/chemistry , Proline/analogs & derivatives , Proline/chemistry , Catalysis , Hydrogen/chemistry , Isomerism , Kinetics
7.
J Am Chem Soc ; 140(44): 14677-14686, 2018 11 07.
Article in English | MEDLINE | ID: mdl-30260635

ABSTRACT

Diamine-mediated α-deprotonation of O-alkyl carbamates or benzoates with alkyllithium reagents, trapping of the carbanion with organoboron compounds, and 1,2-metalate rearrangement of the resulting boronate complex are the primary steps by which organoboron compounds can be stereoselectively homologated. Although the final step can be easily monitored by 11B NMR spectroscopy, the first two steps, which are typically carried out at cryogenic temperatures, are less well understood owing to the requirement for specialized analytical techniques. Investigation of these steps by in situ IR spectroscopy has provided invaluable data for optimizing the homologation reactions of organoboron compounds. Although the deprotonation of benzoates in noncoordinating solvents is faster than that in ethereal solvents, the deprotonation of carbamates shows the opposite trend, a difference that has its origin in the propensity of carbamates to form inactive parasitic complexes with the diamine-ligated alkyllithium reagent. Borylation of bulky diamine-ligated lithiated species in toluene is extremely slow, owing to the requirement for initial complexation of the oxygen atoms of the diol ligand on boron with the lithium ion prior to boron-lithium exchange. However, ethereal solvent, or very small amounts of THF, facilitate precomplexation through initial displacement of the bulky diamines coordinated to the lithium ion. Comparison of the carbonyl stretching frequencies of boronates derived from pinacol boronic esters with those derived from trialkylboranes suggests that the displaced lithium ion is residing on the pinacol oxygen atoms and the benzoate/carbamate carbonyl group, respectively, explaining, at least in part, the faster 1,2-metalate rearrangements of boronates derived from the trialkylboranes.

8.
Angew Chem Int Ed Engl ; 57(27): 8203-8208, 2018 07 02.
Article in English | MEDLINE | ID: mdl-29719111

ABSTRACT

An enantiodivergent method for the synthesis of multiply substituted allenes is described. Highly enantioenriched, point-chiral boronic esters were synthesized by homologation of α-seleno alkenyl boronic esters with lithiated carbamates and eliminated to form axially chiral allene products. By employing either oxidative or alkylative conditions, both syn and anti elimination could be achieved with complete stereospecificity. The process enables the synthesis of either M or P allenes from a single isomer of a point-chiral precursor and can be employed for the enantioselective assembly of di-, tri-, and tetrasubstituted allenes.

9.
Angew Chem Int Ed Engl ; 57(8): 2155-2159, 2018 02 19.
Article in English | MEDLINE | ID: mdl-29316095

ABSTRACT

The synthesis of alkyl boronic esters by direct decarboxylative radical addition of carboxylic acids to vinyl boronic esters is described. The reaction proceeds under mild photoredox catalysis and involves an unprecedented single-electron reduction of an α-boryl radical intermediate to the corresponding anion. The reaction is amenable to a diverse range of substrates, including α-amino, α-oxy, and alkyl carboxylic acids, thus providing a novel method to rapidly access boron-containing molecules of potential biological importance.

11.
Nat Chem ; 9(9): 896-902, 2017 09.
Article in English | MEDLINE | ID: mdl-28837173

ABSTRACT

The polypropionate motif is ubiquitous, being characteristic of the most important family of natural products for human health, the polyketides. Numerous strategies have been devised to construct these molecules with high stereocontrol, but certain stereoisomers remain challenging to prepare. We now describe the development of an iterative assembly line strategy for the construction of polypropionates. An assembly line strategy for the synthesis of deoxypolypropionates has already been described. However, the introduction of carbinol units required the development of new building blocks and new reaction conditions. This has been achieved by the use of enantioenriched lithiated α-chlorosilanes [1-((2'-lithiochloromethyldimethylsilyl)-methyl)-2-(methoxymethyl)-pyrrolidine], thus enabling the programmed synthesis of polypropionates in a fully stereocontrolled manner, including the stereochemically challenging anti-anti isomers. The versatility of the approach is exemplified in its extension to the synthesis of 1,3-related polyols. The methodology now allows access to a much wider family of polyketide natural products with stereochemistry being dialled in at will.

12.
J Am Chem Soc ; 139(34): 11877-11886, 2017 08 30.
Article in English | MEDLINE | ID: mdl-28812893

ABSTRACT

The stereoselective reagent-controlled homologation of boronic esters is one of a small number of iteratable synthetic transformations that if automated could form the basis of a veritable molecule-making machine. Recently, α-stannyl triisopropylbenzoates and α-sulfinyl chlorides have emerged as useful building blocks for the iterative homologation of boronic esters. However, α-stannyl benzoates need to be prepared using stoichiometric amounts of the (+)- or (-)-enantiomer of the scarcely available and expensive diamine sparteine; also, these building blocks, together with the byproducts that are generated during homologation, are perceived as being toxic. On the other hand, α-sulfinyl chlorides are difficult to prepare with high levels of enantiopurity and are prone to undergo deleterious acid-base side-reactions under the reaction conditions for homologation, leading to low stereospecificity. Here, we show that the use of a hybrid of these two building blocks, namely, α-sulfinyl triisopropylbenzoates, largely overcomes the above drawbacks. Through either the sulfinylation of α-magnesiated benzoates with either enantiomer of Andersen's readily available menthol-derived sulfinate or the α-alkylation of enantiopure S-chiral α-sulfinyl benzoates, we have prepared a range of highly enantiopure mono- and disubstituted α-sulfinyl benzoates, some bearing sensitive functional groups. Barbier-type reaction conditions have been developed that allow these building blocks to be converted into lithium (t-BuLi) and magnesium (i-PrMgCl·LiCl) carbenoids in the presence of boronic esters, thus allowing efficient and highly stereospecific homologation. The use of magnesium carbenoids allows carbon chains to be grown with the incorporation of sensitive functional groups, such as alkyl/aryl halides, azides, and esters. The use of lithium carbenoids, which are less sensitive to steric hindrance, allows sterically encumbered carbon-carbon bonds to be forged. We have also shown that these building blocks can be used consecutively in three- and four-step iterative homologation processes, without intervening column chromatography, to give contiguously substituted carbon chains with very high levels of enantio- and diastereoselectivity.

13.
Nature ; 547(7664): 436-440, 2017 07 26.
Article in English | MEDLINE | ID: mdl-28748934

ABSTRACT

Small-molecule, biologically active natural products continue to be our most rewarding source of, and inspiration for, new medicines. Sometimes we happen upon such molecules in minute quantities in unique, difficult-to-reach, and often fleeting environments, perhaps never to be discovered again. In these cases, determining the structure of a molecule-including assigning its relative and absolute configurations-is paramount, enabling one to understand its biological activity. Molecules that comprise stereochemically complex acyclic and conformationally flexible carbon chains make such a task extremely challenging. The baulamycins (A and B) serve as a contemporary example. Isolated in small quantities and shown to have promising antimicrobial activity, the structure of the conformationally flexible molecules was determined largely through J-based configurational analysis, but has been found to be incorrect. Our subsequent campaign to identify the true structures of the baulamycins has revealed a powerful method for the rapid structural elucidation of such molecules. Specifically, the prediction of nuclear magnetic resonance (NMR) parameters through density functional theory-combined with an efficient sequence of boron-based synthetic transformations, which allowed an encoded (labelled) mixture of natural-product diastereomers to be prepared-enabled us rapidly to pinpoint and synthesize the correct structures.


Subject(s)
Fatty Alcohols/chemistry , Fatty Alcohols/chemical synthesis , Magnetic Resonance Spectroscopy , Molecular Structure , Resorcinols/chemistry , Resorcinols/chemical synthesis , Chemistry Techniques, Synthetic , Models, Molecular , Stereoisomerism
14.
J Am Chem Soc ; 139(27): 9148-9151, 2017 07 12.
Article in English | MEDLINE | ID: mdl-28665124

ABSTRACT

We report the first enantioselective Rh-catalyzed Markovnikov hydroboration of unactivated terminal alkenes. Using a novel sp2-sp3 hybridized diboron reagent and water as a proton source, a broad range of alkenes undergo hydroboration to provide secondary boronic esters with high regio- and enantiocontrol.

15.
Science ; 357(6348): 283-286, 2017 07 21.
Article in English | MEDLINE | ID: mdl-28619717

ABSTRACT

The conversion of widely available carboxylic acids into versatile boronic esters would be highly enabling for synthesis. We found that this transformation can be effected by illuminating the N-hydroxyphthalimide ester derivative of the carboxylic acid under visible light at room temperature in the presence of the diboron reagent bis(catecholato)diboron. A simple workup allows isolation of the pinacol boronic ester. Experimental evidence suggests that boryl radical intermediates are involved in the process. The methodology is illustrated by the transformation of primary, secondary, and tertiary alkyl carboxylic acids as well as a diverse range of natural-product carboxylic acids, thereby demonstrating its broad utility and functional group tolerance.

16.
J Am Chem Soc ; 139(28): 9519-9522, 2017 07 19.
Article in English | MEDLINE | ID: mdl-28661133

ABSTRACT

Coupling reactions between benzylamines and boronic esters have been investigated. ortho-Lithiated benzylamines react with boronic esters and a N-activator to afford ortho-substituted benzylic boronic esters with formal 1,1'-benzylidene insertion into the C-B bond. The reaction occurs by a SN2' elimination and 1,2-metalate rearrangement of the N-activated boronate complex to afford a dearomatized intermediate, which undergoes a Lewis-acid catalyzed 1,3-borotropic shift to afford the boronic ester products in high yield and with excellent enantiospecificity. The use of enantioenriched α-substituted benzylamines gave the corresponding secondary boronic esters with high ee.

17.
Angew Chem Int Ed Engl ; 56(39): 11700-11733, 2017 09 18.
Article in English | MEDLINE | ID: mdl-28525685

ABSTRACT

Non-racemic chiral boronic esters are recognised as immensely valuable building blocks in modern organic synthesis. Their stereospecific transformation into a variety of functional groups-from amines and halides to arenes and alkynes-along with their air and moisture stability, has established them as an important target for asymmetric synthesis. Efforts towards the stereoselective synthesis of secondary and tertiary alkyl boronic esters have spanned over five decades and are underpinned by a wealth of reactivity platforms, drawing on the unique and varied reactivity of boron. This Review summarizes strategies for the asymmetric synthesis of alkyl boronic esters, from the seminal hydroboration methods of H. C. Brown to the current state of the art.

18.
Chem Sci ; 8(4): 2898-2903, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28451355

ABSTRACT

Diborylmethane can be homologated uni- and bidirectionally by using enantiomerically pure lithium-stabilized carbenoids to give 1,2- and 1,3-bis(boronic esters), respectively, in good yield and with excellent levels of enantio- and diastereoselectivity. The high sensitivity of the transformation to steric hindrance enables the exclusive operation of either manifold, effected through the judicious choice of the type of carbenoid, which can be a sparteine-ligated or a diamine-free lithiated benzoate/carbamate. The scope of the 1,2-bis(boronic esters) so generated is complementary to that encompassed by the asymmetric diboration of alkenes, in that primary-secondary and primary-tertiary 1,2-bis(boronic esters) can be prepared with equally high levels of selectivity and that functional groups, such as terminal alkynes and alkenes, are tolerated. Methods for forming C2-symmetric and non-symmetrical anti and syn 1,3-bis(boronic esters) are also described and represent a powerful route towards 1,3-functionalized synthetic intermediates.

19.
Angew Chem Int Ed Engl ; 56(3): 786-790, 2017 01 16.
Article in English | MEDLINE | ID: mdl-27958668

ABSTRACT

A stereodivergent coupling reaction between vinyl halides and boronic esters is described. This coupling process proceeds without a transition-metal catalyst, instead proceeding by electrophilic selenation or iodination of a vinyl boronate complex followed by stereospecific syn or anti elimination. Chiral, nonracemic boronic esters could be coupled with complete enantiospecificity. The process enables the highly stereoselective synthesis of either the E or Z alkene from a single isomer of a vinyl coupling partner.

20.
Angew Chem Int Ed Engl ; 55(47): 14663-14667, 2016 11 14.
Article in English | MEDLINE | ID: mdl-27781356

ABSTRACT

1,2-Bis(boronic esters), derived from the enantioselective diboration of terminal alkenes, can be selectively homologated at the primary boronic ester by using enantioenriched primary/secondary lithiated carbamates or benzoates to give 1,3-bis(boronic esters), which can be subsequently oxidized to the corresponding secondary-secondary and secondary-tertiary 1,3-diols with full stereocontrol. The transformation was applied to a concise total synthesis of the 14-membered macrolactone, Sch 725674. The nine-step synthetic route also features a novel desymmetrizing enantioselective diboration of a divinyl carbinol derivative and high-yielding late-stage cross-metathesis and Yamaguchi macrolactonization reactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...