Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
bioRxiv ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38746471

ABSTRACT

The coordinated biomechanical performance, such as uterine stretch and cervical barrier function, within maternal reproductive tissues facilitates healthy human pregnancy and birth. Quantifying normal biomechanical function and detecting potentially detrimental biomechanical dysfunction (e.g., cervical insufficiency, uterine overdistention, premature rupture of membranes) is difficult, largely due to minimal data on the shape and size of maternal anatomy and material properties of tissue across gestation. This study quantitates key structural features of human pregnancy to fill this knowledge gap and facilitate three-dimensional modeling for biomechanical pregnancy simulations to deeply explore pregnancy and childbirth. These measurements include the longitudinal assessment of uterine and cervical dimensions, fetal weight, and cervical stiffness in 47 low-risk pregnancies at four time points during gestation (late first, middle second, late second, and middle third trimesters). The uterine and cervical size were measured via 2-dimensional ultrasound, and cervical stiffness was measured via cervical aspiration. Trends in uterine and cervical measurements were assessed as time-course slopes across pregnancy and between gestational time points, accounting for specific participants. Patient-specific computational solid models of the uterus and cervix, generated from the ultrasonic measurements, were used to estimate deformed uterocervical volume. Results show that for this low-risk cohort, the uterus grows fastest in the inferior-superior direction from the late first to middle second trimester and fastest in the anterior-posterior and left-right direction between the middle and late second trimester. Contemporaneously, the cervix softens and shortens. It softens fastest from the late first to the middle second trimester and shortens fastest between the late second and middle third trimester. Alongside the fetal weight estimated from ultrasonic measurements, this work presents holistic maternal and fetal patient-specific biomechanical measurements across gestation.

2.
J Biomech Eng ; : 1-46, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38766990

ABSTRACT

During vaginal labour, the delivery requires the fetal head to mould to accommodate the geometric constraints of the birth canal. Excessive moulding can produce brain injuries and long-term sequelae. Understanding the loading of the fetal brain during the second stage of labour (fully dilated cervix, active pushing, and expulsion of fetus) could thus help predict the safety of the newborn during vaginal delivery. To this end, this study proposes a finite element model of the fetal head and maternal canal environment that is capable of predicting the stresses experienced by the fetal brain at the onset of the second phase of labour. Both fetal and maternal models were adapted from existing studies to represent the geometry of full-term pregnancy. Two fetal positions were compared: left-occiput-anterior and left-occiput-posterior. The results demonstrate that left-occiput-anterior position reduces the maternal tissue deformation, at the cost of higher stress in the fetal brain. In both cases, stress is concentrated underneath the sutures, though the location varies depending on the presentation. In summary, this study provides a patient-specific simulation platform for the study of vaginal labour and its effect on both the fetal brain and maternal anatomy. Finally, it is suggested that such an approach has the potential to be used by obstetricians to support their decision-making processes through the simulation of various delivery scenarios.

3.
bioRxiv ; 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38712283

ABSTRACT

A successful pregnancy relies on the proper cellular, biochemical, and mechanical functions of the uterus. A comprehensive understanding of uterine mechanical properties during pregnancy is key to understanding different gynecological and obstetric disorders such as preterm birth, placenta accreta, leiomyoma, and endometriosis. This study sought to characterize the macro-scale equilibrium material behaviors of the human uterus in non-pregnancy and late pregnancy under both compressive and tensile loading. Fifty human uterine specimens from 16 patients (8 nonpregnant [NP] and 8 pregnant [PG]) were tested using spherical indentation and uniaxial tension coupled with digital image correlation (DIC). A three-level incremental load-hold protocol was applied to both tests. A microstructurally-inspired material model considering fiber architecture was applied to this dataset. Inverse finite element analysis (IFEA) was then performed to generate a single set of mechanical parameters to describe compressive and tensile behaviors. The freeze-thaw effect on uterine macro mechanical properties was also evaluated. PG tissue exhibits decreased overall stiffness and increased fiber network extensibility compared to NP uterine tissue. Under indentation, ground substance compressibility was similar between NP and PG uterine tissue. In tension, the fiber network of the PG uterus was found to be more extensible and dispersed than in nonpregnancy. Lastly, a single freeze-thaw cycle did not systematically alter the macro-scale material behavior of the human uterus.

4.
Article in English | MEDLINE | ID: mdl-38758337

ABSTRACT

Successful pregnancy highly depends on the complex interaction between the uterine body, cervix, and fetal membrane. This interaction is synchronized, usually following a specific sequence in normal vaginal deliveries: (1) cervical ripening, (2) uterine contractions, and (3) rupture of fetal membrane. The complex interaction between the cervix, fetal membrane, and uterine contractions before the onset of labor is investigated using a complete third-trimester gravid model of the uterus, cervix, fetal membrane, and abdomen. Through a series of numerical simulations, we investigate the mechanical impact of (i) initial cervical shape, (ii) cervical stiffness, (iii) cervical contractions, and (iv) intrauterine pressure. The findings of this work reveal several key observations: (i) maximum principal stress values in the cervix decrease in more dilated, shorter, and softer cervices; (ii) reduced cervical stiffness produces increased cervical dilation, larger cervical opening, and decreased cervical length; (iii) the initial cervical shape impacts final cervical dimensions; (iv) cervical contractions increase the maximum principal stress values and change the stress distributions; (v) cervical contractions potentiate cervical shortening and dilation; (vi) larger intrauterine pressure (IUP) causes considerably larger stress values and cervical opening, larger dilation, and smaller cervical length; and (vii) the biaxial strength of the fetal membrane is only surpassed in the cases of the (1) shortest and most dilated initial cervical geometry and (2) larger IUP.

6.
J Biomech Eng ; 146(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38491978

ABSTRACT

Birthing mechanics are poorly understood, though many injuries during childbirth are mechanical, like fetal and maternal tissue damage. Several biomechanical simulation models of parturition have been proposed to investigate birth, but many do not include the uterus. Additionally, most solid models rely on segmenting anatomical structures from clinical images to generate patient geometry, which can be time-consuming. This work presents two new parametric solid modeling methods for generating patient-specific, at-term uterine three-dimensional geometry. Building from an established method of modeling the sagittal uterine shape, this work improves the uterine coronal shape, especially where the fetal head joins the lower uterine wall. Solid models of the uterus and cervix were built from five at-term patients' magnetic resonance imaging (MRI) sets. Using anatomy measurements from MRI-segmented models, two parametric models were created-one that employs an averaged coronal uterine shape and one with multiple axial measurements of the coronal uterus. Through finite element analysis, the two new parametric methods were compared to the MRI-segmented high-fidelity method and a previously published elliptical low-fidelity method. A clear improvement in the at-term uterine shape was found using the two new parametric methods, and agreement in principal Lagrange strain directions was observed across all modeling methods. These methods provide an effective and efficient way to generate three-dimensional solid models of patient-specific maternal uterine anatomy, advancing possibilities for future research in computational birthing biomechanics.


Subject(s)
Imaging, Three-Dimensional , Uterus , Female , Humans , Uterus/diagnostic imaging , Magnetic Resonance Imaging , Cervix Uteri , Computer Simulation
7.
J Mech Behav Biomed Mater ; 154: 106509, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38518513

ABSTRACT

Gelatin methacryloyl (GelMA) hydrogels are widely used for a variety of tissue engineering applications. The properties of gelatin can affect the mechanical properties of gelatin gels; however, the role of gelatin properties such as bloom strength on GelMA hydrogels has not yet been explored. Bloom strength is a food industry standard for describing the quality of gelatin, where higher bloom strength is associated with higher gelatin molecular weight. Here, we evaluate the role of bloom strength on GelMA hydrogel mechanical properties. We determined that both bloom strength of gelatin and weight percent of GelMA influenced both stiffness and viscoelastic ratio; however, only bloom strength affected diffusivity, permeability, and pore size. With this library of GelMA hydrogels of varying properties, we then encapsulated Swan71 trophoblast spheroids in these hydrogel variants to assess how bloom strength affects trophoblast spheroid morphology. Overall, we observed a decreasing trend of spheroid area and Feret diameter as bloom strength increased. In identifying clear relationships between bloom strength, hydrogel mechanical properties, and trophoblast spheroid morphology, we demonstrate that bloom strength should considered when designing tissue engineered constructs.


Subject(s)
Gelatin , Tissue Scaffolds , Hydrogels , Tissue Engineering , Methacrylates
8.
J Biomech Eng ; 146(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38270929

ABSTRACT

Cervical remodeling is critical for a healthy pregnancy. Premature tissue changes can lead to preterm birth (PTB), and the absence of remodeling can lead to post-term birth, causing significant morbidity. Comprehensive characterization of cervical material properties is necessary to uncover the mechanisms behind abnormal cervical softening. Quantifying cervical material properties during gestation is challenging in humans. Thus, a nonhuman primate (NHP) model is employed for this study. In this study, cervical tissue samples were collected from Rhesus macaques before pregnancy and at three gestational time points. Indentation and tension mechanical tests were conducted, coupled with digital image correlation (DIC), constitutive material modeling, and inverse finite element analysis (IFEA) to characterize the equilibrium material response of the macaque cervix during pregnancy. Results show, as gestation progresses: (1) the cervical fiber network becomes more extensible (nonpregnant versus pregnant locking stretch: 2.03 ± 1.09 versus 2.99 ± 1.39) and less stiff (nonpregnant versus pregnant initial stiffness: 272 ± 252 kPa versus 43 ± 43 kPa); (2) the ground substance compressibility does not change much (nonpregnant versus pregnant bulk modulus: 1.37 ± 0.82 kPa versus 2.81 ± 2.81 kPa); (3) fiber network dispersion increases, moving from aligned to randomly oriented (nonpregnant versus pregnant concentration coefficient: 1.03 ± 0.46 versus 0.50 ± 0.20); and (4) the largest change in fiber stiffness and dispersion happen during the second trimester. These results, for the first time, reveal the remodeling process of a nonhuman primate cervix and its distinct regimes throughout the entire pregnancy.


Subject(s)
Cervix Uteri , Premature Birth , Infant, Newborn , Pregnancy , Humans , Female , Animals , Macaca mulatta , Extracellular Matrix , Finite Element Analysis
9.
J Mech Behav Biomed Mater ; 151: 106348, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38198930

ABSTRACT

The uterus has critical biomechanical functions in pregnancy and undergoes dramatic material growth and remodeling from implantation to parturition. The intrinsic material properties of the human uterus and how they evolve in pregnancy are poorly understood. To address this knowledge gap and assess the heterogeneity of these tissues, the time-dependent material properties of all human uterine layers were measured with nanoindentation. The endometrium-decidua layer was found to be the least stiff, most viscous, and least permeable layer of the human uterus in nonpregnant and third-trimester pregnant tissues. In pregnancy, the endometrium-decidua becomes stiffer and less viscous with no material property changes observed in the myometrium or perimetrium. Additionally, uterine material properties did not significantly differ between third-trimester pregnant tissues with and without placenta accreta. The foundational data generated by this study will facilitate the development of physiologically accurate models of the human uterus to investigate gynecologic and obstetric disorders.


Subject(s)
Decidua , Placenta , Pregnancy , Humans , Female , Uterus , Myometrium
10.
Sci Rep ; 14(1): 586, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38182631

ABSTRACT

Mammalian pregnancy requires gradual yet extreme remodeling of the reproductive organs to support the growth of the embryos and their birth. After delivery, the reproductive organs return to their non-pregnant state. As pregnancy has traditionally been understudied, there are many unknowns pertaining to the mechanisms behind this remarkable remodeling and repair process which, when not successful, can lead to pregnancy-related complications such as maternal trauma, pre-term birth, and pelvic floor disorders. This study presents the first longitudinal imaging data that focuses on revealing anatomical alterations of the vagina, cervix, and uterine horns during pregnancy and postpartum using the mouse model. By utilizing advanced magnetic resonance imaging (MRI) technology, T1-weighted and T2-weighted images of the reproductive organs of three mice in their in vivo environment were collected at five time points: non-pregnant, mid-pregnant (gestation day: 9-10), late pregnant (gestation day: 16-17), postpartum (24-72 h after delivery) and three weeks postpartum. Measurements of the vagina, cervix, and uterine horns were taken by analyzing MRI segmentations of these organs. The cross-sectional diameter, length, and volume of the vagina increased in late pregnancy and then returned to non-pregnant values three weeks after delivery. The cross-sectional diameter of the cervix decreased at mid-pregnancy before increasing in late pregnancy. The volume of the cervix peaked at late pregnancy before shortening by 24-72 h postpartum. As expected, the uterus increased in cross-sectional diameter, length, and volume during pregnancy. The uterine horns decreased in size postpartum, ultimately returning to their average non-pregnant size three weeks postpartum. The newly developed methods for acquiring longitudinal in vivo MRI scans of the murine reproductive system can be extended to future studies that evaluate functional and morphological alterations of this system due to pathologies, interventions, and treatments.


Subject(s)
Magnetic Resonance Imaging , Uterus , Female , Humans , Pregnancy , Animals , Mice , Uterus/diagnostic imaging , Research Design , Vagina/diagnostic imaging , Postpartum Period , Mammals
11.
bioRxiv ; 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38076933

ABSTRACT

Uterine rupture is an intrinsically biomechanical process associated with high maternal and fetal mortality. A previous Cesarean section (C-section) is the main risk factor for uterine rupture in a subsequent pregnancy due to tissue failure at the scar region. Finite element modeling of the uterus and scar tissue presents a promising method to further understand and predict uterine ruptures. Using patient dimensions of an at-term uterus, a C-section scar was modeled with an applied intrauterine pressure to study how scars affect uterine stress. The scar positioning and uterine thickness were varied, and a defect was incorporated into the scar region. The modeled stress distributions confirmed clinical observations as the increased regions of stress due to scar positioning, thinning of the uterine walls, and the presence of a defect are consistent with clinical observations of features that increase the risk of uterine rupture.

12.
J Mech Behav Biomed Mater ; 150: 106344, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38160642

ABSTRACT

The fetal membranes are an essential mechanical structure for pregnancy, protecting the developing fetus in an amniotic fluid environment and rupturing before birth. In cooperation with the cervix and the uterus, the fetal membranes support the mechanical loads of pregnancy. Structurally, the fetal membranes comprise two main layers: the amnion and the chorion. The mechanical characterization of each layer is crucial to understanding how each layer contributes to the structural performance of the whole membrane. The in-vivo mechanical loading of the fetal membranes and the amount of tissue stress generated in each layer throughout gestation remains poorly understood, as it is difficult to perform direct measurements on pregnant patients. Finite element analysis of pregnancy offers a computational method to explore how anatomical and tissue remodeling factors influence the load-sharing of the uterus, cervix, and fetal membranes. To aid in the formulation of such computational models of pregnancy, this work develops a fiber-based multilayer fetal membrane model that captures its response to previously published bulge inflation loading data. First, material models for the amnion, chorion, and maternal decidua are formulated, informed, and validated by published data. Then, the behavior of the fetal membrane as a layered structure was analyzed, focusing on the respective stress distribution and thickness variation in each layer. The layered computational model captures the overall behavior of the fetal membranes, with the amnion being the mechanically dominant layer. The inclusion of fibers in the amnion material model is an important factor in obtaining reliable fetal membrane behavior according to the experimental dataset. These results highlight the potential of this layered model to be integrated into larger biomechanical models of the gravid uterus and cervix to study the mechanical mechanisms of preterm birth.


Subject(s)
Premature Birth , Infant, Newborn , Pregnancy , Female , Humans , Extraembryonic Membranes , Amnion , Fetus , Mechanical Tests
13.
bioRxiv ; 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38014304

ABSTRACT

Gelatin methacryloyl (GelMA) hydrogels are widely used for a variety of tissue engineering applications. The properties of gelatin can affect the mechanical properties of gelatin gels; however, the role of gelatin properties such as bloom strength on GelMA hydrogels has not yet been explored. Bloom strength is a food industry standard for describing the quality of gelatin, where higher bloom strength is associated with higher gelatin molecular weight. Here, we evaluate the role of bloom strength on GelMA hydrogel mechanical properties. We determined that both bloom strength of gelatin and weight percent of GelMA influenced both stiffness and viscoelastic ratio; however, only bloom strength affected diffusivity, permeability, and pore size. With this library of GelMA hydrogels of varying properties, we then encapsulated Swan71 trophoblast spheroids in these hydrogel variants to assess how bloom strength affects trophoblast spheroid morphology. Overall, we observed a decreasing trend of spheroid area and Feret diameter as bloom strength increased. In identifying clear relationships between bloom strength, hydrogel mechanical properties, and trophoblast spheroid morphology, we demonstrate that bloom strength should considered when designing tissue engineered constructs.

14.
APL Bioeng ; 7(4): 046103, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37854060

ABSTRACT

Atherosclerosis is a primary precursor of cardiovascular disease (CVD), the leading cause of death worldwide. While proprotein convertase subtilisin/kexin 9 (PCSK9) contributes to CVD by degrading low-density lipoprotein receptors (LDLR) and altering lipid metabolism, PCSK9 also influences vascular inflammation, further promoting atherosclerosis. Here, we utilized a vascular microphysiological system to test the effect of PCSK9 activation or repression on the initiation of atherosclerosis and to screen the efficacy of a small molecule PCSK9 inhibitor. We have generated PCSK9 over-expressed (P+) or repressed (P-) human induced pluripotent stem cells (iPSCs) and further differentiated them to smooth muscle cells (viSMCs) or endothelial cells (viECs). Tissue-engineered blood vessels (TEBVs) made from P+ viSMCs and viECs resulted in increased monocyte adhesion compared to the wild type (WT) or P- equivalents when treated with enzyme-modified LDL (eLDL) and TNF-α. We also found significant viEC dysfunction, such as increased secretion of VCAM-1, TNF-α, and IL-6, in P+ viECs treated with eLDL and TNF-α. A small molecule compound, NYX-1492, that was originally designed to block PCSK9 binding with the LDLR was tested in TEBVs to determine its effect on lowering PCSK9-induced inflammation. The compound reduced monocyte adhesion in P+ TEBVs with evidence of lowering secretion of VCAM-1 and TNF-α. These results suggest that PCSK9 inhibition may decrease vascular inflammation in addition to lowering plasma LDL levels, enhancing its anti-atherosclerotic effects, particularly in patients with elevated chronic inflammation.

15.
bioRxiv ; 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37609213

ABSTRACT

The uterus has critical biomechanical functions in pregnancy and undergoes dramatic material growth and remodeling from implantation to parturition. The intrinsic material properties of the human uterus and how they evolve in pregnancy are poorly understood. To address this knowledge gap and assess the heterogeneity of these tissues, the time-dependent material properties of all human uterine layers were measured with nanoindentation. The endometrium-decidua layer was found to be the least stiff, most viscous, and least permeable layer of the human uterus in nonpregnant and third-trimester pregnant tissues. In pregnancy, endometrium-decidua becomes stiffer and less viscous with no material property changes observed in the myometrium or perimetrium. Additionally, uterine material properties did not significantly differ between third-trimester pregnant tissues with and without placenta accreta. The foundational data generated by this study will facilitate the development of physiologically accurate models of the human uterus to investigate gynecologic and obstetric disorders.

16.
Biomed Opt Express ; 14(6): 2969-2985, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37342693

ABSTRACT

Fetal membranes have important mechanical and antimicrobial roles in maintaining pregnancy. However, the small thickness (<800 µm) of fetal membranes places them outside the resolution limits of most ultrasound and magnetic resonance systems. Optical imaging methods like optical coherence tomography (OCT) have the potential to fill this resolution gap. Here, OCT and machine learning methods were developed to characterize the ex vivo properties of human fetal membranes under dynamic loading. A saline inflation test was incorporated into an OCT system, and tests were performed on n = 33 and n = 32 human samples obtained from labored and C-section donors, respectively. Fetal membranes were collected in near-cervical and near-placental locations. Histology, endogenous two photon fluorescence microscopy, and second harmonic generation microscopy were used to identify sources of contrast in OCT images of fetal membranes. A convolutional neural network was trained to automatically segment fetal membrane sub-layers with high accuracy (Dice coefficients >0.8). Intact amniochorion bilayer and separated amnion and chorion were individually loaded, and the amnion layer was identified as the load-bearing layer within intact fetal membranes for both labored and C-section samples, consistent with prior work. Additionally, the rupture pressure and thickness of the amniochorion bilayer from the near-placental region were greater than those of the near-cervical region for labored samples. This location-dependent change in fetal membrane thickness was not attributable to the load-bearing amnion layer. Finally, the initial phase of the loading curve indicates that amniochorion bilayer from the near-cervical region is strain-hardened compared to the near-placental region in labored samples. Overall, these studies fill a gap in our understanding of the structural and mechanical properties of human fetal membranes at high resolution under dynamic loading events.

17.
J Mech Behav Biomed Mater ; 143: 105875, 2023 07.
Article in English | MEDLINE | ID: mdl-37187153

ABSTRACT

The cervix is a soft tissue exhibiting time-dependent behavior under mechanical loads. The cervix is a vital mechanical barrier to protect the growing fetus. The remodeling of the cervical tissue, characterized by an increase in time-dependent material properties, is necessary for a safe parturition. The failure of its mechanical function and accelerated tissue remodeling is hypothesized to lead to preterm birth, which is birth before 37 weeks of gestation. To understand the mechanism of the time-dependent behavior of the cervix under compressive states, we employ a porous-viscoelastic material model to describe a set of spherical indentation tests performed on nonpregnant and term pregnant tissue. A genetic algorithm-based inverse finite element analysis is used to fit the force-relaxation data by optimizing the material parameters, and the statistical analysis of the optimized material parameters is conducted on different sample groups. The force response is captured well using the porous-viscoelastic model. The indentation force-relaxation of the cervix is explained by the porous effects and the intrinsic viscoelastic properties of the extracellular matrix (ECM) microstructure. The hydraulic permeability obtained from the inverse finite element analysis agrees with the trend of the value directly measured previously by our group. The nonpregnant samples are found significantly more permeable than the pregnant samples. Within nonpregnant samples, the posterior internal os is found significantly less permeable than the anterior and posterior external os. The proposed model exhibits the superior capability to capture the force-relaxation response of the cervix under indentation, as compared to the conventional quasi-linear viscoelastic framework (range of r2 of the porous-viscoelastic model 0.88-0.98 vs. quasi-linear model: 0.67-0.89). As a constitutive model with a relatively simple form, the porous-viscoelastic framework has the potential to be used to understand disease mechanisms of premature cervical remodeling, model contact of the cervix with biomedical devices, and interpret force readings from novel in-vivo measurement tools such as an aspiration device.


Subject(s)
Cervix Uteri , Premature Birth , Infant, Newborn , Pregnancy , Female , Humans , Porosity , Mechanical Phenomena , Parturition , Finite Element Analysis , Stress, Mechanical , Elasticity , Viscosity
18.
Sci Rep ; 13(1): 6305, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37072435

ABSTRACT

Non-invasive monitoring of atherosclerosis remains challenging. Pulse Wave Imaging (PWI) is a non-invasive technique to measure the local stiffness at diastolic and end-systolic pressures and quantify the hemodynamics. The objective of this study is twofold, namely (1) to investigate the capability of (adaptive) PWI to assess progressive change in local stiffness and homogeneity of the carotid in a high-cholesterol swine model and (2) to assess the ability of PWI to monitor the change in hemodynamics and a corresponding change in stiffness. Nine (n=9) hypercholesterolemic swine were included in this study and followed for up to 9 months. A ligation in the left carotid was used to cause a hemodynamic disturbance. The carotids with detectable hemodynamic disturbance showed a reduction in wall shear stress immediately after ligation (2.12 ± 0.49 to 0.98 ± 0.47 Pa for 40-90% ligation (Group B) and 1.82 ± 0.25 to 0.49 ± 0.46 Pa for >90% ligation (Group C)). Histology revealed subsequent lesion formation after 8-9 months, and the type of lesion formation was dependent on the type of the induced ligation, with more complex plaques observed in the carotids with a more significant ligation (C: >90%). The compliance progression appears differed for groups B and C, with an increase in compliance to 2.09 ± 2.90×10-10 m2 Pa-1 for group C whereas the compliance of group B remained low at 8 months (0.95 ± 0.94×10-10 m2 Pa-1). In summary, PWI appeared capable of monitoring a change in wall shear stress and separating two distinct progression pathways resulting in distinct compliances.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Animals , Swine , Atherosclerosis/diagnostic imaging , Atherosclerosis/pathology , Plaque, Atherosclerotic/diagnostic imaging , Carotid Arteries/diagnostic imaging , Carotid Arteries/pathology , Diagnostic Imaging , Disease Progression
19.
Sci Adv ; 9(4): eade2514, 2023 01 27.
Article in English | MEDLINE | ID: mdl-36706190

ABSTRACT

Despite the advancements in skin bioengineering, 3D skin constructs are still produced as flat tissues with open edges, disregarding the fully enclosed geometry of human skin. Therefore, they do not effectively cover anatomically complex body sites, e.g., hands. Here, we challenge the prevailing paradigm by engineering the skin as a fully enclosed 3D tissue that can be shaped after a body part and seamlessly transplanted as a biological clothing. Our wearable edgeless skin constructs (WESCs) show enhanced dermal extracellular matrix (ECM) deposition and mechanical properties compared to conventional constructs. WESCs display region-specific cell/ECM alignment, as well as physiologic anisotropic mechanical properties. WESCs replace the skin in full-thickness wounds of challenging body sites (e.g., mouse hindlimbs) with minimal suturing and shorter surgery time. This study provides a compelling technology that may substantially improve wound care and suggests that the recapitulation of the tissue macroanatomy can lead to enhanced biological function.


Subject(s)
Bioengineering , Extracellular Matrix , Humans , Engineering , Tissue Engineering
20.
Biomaterials ; 288: 121756, 2022 09.
Article in English | MEDLINE | ID: mdl-36041938

ABSTRACT

Materials currently used to repair or replace a heart valve are not durable. Their limited durability related to structural degeneration or thrombus formation is attributed to their inadequate mechanical properties and biocompatibility profiles. Our hypothesis is that a biostable material that mimics the structure, mechanical and biological properties of native tissue will improve the durability of these leaflets substitutes and in fine improve the patient outcome. Here, we report the development, optimization, and testing of a biomimetic, multilayered material (BMM), designed to replicate the native valve leaflets. Polycarbonate urethane and polycaprolactone have been processed as film, foam, and aligned fibers to replicate the leaflet's architecture and anisotropy, through solution casting, lyophilization, and electrospinning. Compared to the commercialized materials, our BMMs exhibited an anisotropic behavior and a closer mechanical performance to the aortic leaflets. The material exhibited superior biostability in an accelerated oxidization environment. It also displayed better resistance to protein adsorption and calcification in vitro and in vivo. These results will pave the way for a new class of advanced synthetic material with long-term durability for surgical valve repair or replacement.


Subject(s)
Biomimetic Materials , Heart Valve Prosthesis , Aortic Valve/surgery , Biomimetic Materials/chemistry , Biomimetics , Heart Valves , Humans , Polymers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...