Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Front Toxicol ; 6: 1359507, 2024.
Article in English | MEDLINE | ID: mdl-38742231

ABSTRACT

In the European regulatory context, rodent in vivo studies are the predominant source of neurotoxicity information. Although they form a cornerstone of neurotoxicological assessments, they are costly and the topic of ethical debate. While the public expects chemicals and products to be safe for the developing and mature nervous systems, considerable numbers of chemicals in commerce have not, or only to a limited extent, been assessed for their potential to cause neurotoxicity. As such, there is a societal push toward the replacement of animal models with in vitro or alternative methods. New approach methods (NAMs) can contribute to the regulatory knowledge base, increase chemical safety, and modernize chemical hazard and risk assessment. Provided they reach an acceptable level of regulatory relevance and reliability, NAMs may be considered as replacements for specific in vivo studies. The European Partnership for the Assessment of Risks from Chemicals (PARC) addresses challenges to the development and implementation of NAMs in chemical risk assessment. In collaboration with regulatory agencies, Project 5.2.1e (Neurotoxicity) aims to develop and evaluate NAMs for developmental neurotoxicity (DNT) and adult neurotoxicity (ANT) and to understand the applicability domain of specific NAMs for the detection of endocrine disruption and epigenetic perturbation. To speed up assay time and reduce costs, we identify early indicators of later-onset effects. Ultimately, we will assemble second-generation developmental neurotoxicity and first-generation adult neurotoxicity test batteries, both of which aim to provide regulatory hazard and risk assessors and industry stakeholders with robust, speedy, lower-cost, and informative next-generation hazard and risk assessment tools.

2.
Front Toxicol ; 6: 1285768, 2024.
Article in English | MEDLINE | ID: mdl-38523647

ABSTRACT

Introduction: The Adverse Outcome Pathway (AOP) concept facilitates rapid hazard assessment for human health risks. AOPs are constantly evolving, their number is growing, and they are referenced in the AOP-Wiki database, which is supported by the OECD. Here, we present a study that aims at identifying well-defined biological areas, as well as gaps within the AOP-Wiki for future research needs. It does not intend to provide a systematic and comprehensive summary of the available literature on AOPs but summarizes and maps biological knowledge and diseases represented by the already developed AOPs (with OECD endorsed status or under validation). Methods: Knowledge from the AOP-Wiki database were extracted and prepared for analysis using a multi-step procedure. An automatic mapping of the existing information on AOPs (i.e., genes/proteins and diseases) was performed using bioinformatics tools (i.e., overrepresentation analysis using Gene Ontology and DisGeNET), allowing both the classification of AOPs and the development of AOP networks (AOPN). Results: AOPs related to diseases of the genitourinary system, neoplasms and developmental anomalies are the most frequently investigated on the AOP-Wiki. An evaluation of the three priority cases (i.e., immunotoxicity and non-genotoxic carcinogenesis, endocrine and metabolic disruption, and developmental and adult neurotoxicity) of the EU-funded PARC project (Partnership for the Risk Assessment of Chemicals) are presented. These were used to highlight under- and over-represented adverse outcomes and to identify and prioritize gaps for further research. Discussion: These results contribute to a more comprehensive understanding of the adverse effects associated with the molecular events in AOPs, and aid in refining risk assessment for stressors and mitigation strategies. Moreover, the FAIRness (i.e., data which meets principles of findability, accessibility, interoperability, and reusability (FAIR)) of the AOPs appears to be an important consideration for further development.

3.
Food Chem Toxicol ; 180: 114031, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37696467

ABSTRACT

Acrylamide is a probable human carcinogen with widespread exposure via food. The present study compared acrylamide intake measurements obtained from haemoglobin adduct levels and self-registered dietary consumption data in a group of 144 Norwegian healthy adults. Acrylamide adducts to N-terminal valine in haemoglobin were measured and used to estimate the intake via the internal dose approach which showed a median (interquartile range) of 0.24 (0.19-0.30) µg/kg bw/day. Data from weighed food records and food frequency questionnaires from the same individuals were used for probabilistic modelling of the intake of acrylamide. The median acrylamide intake was calculated to be 0.26 (0.16-0.39) and 0.30 (0.23-0.39) µg/kg bw/day, respectively from the two sources of self-registered dietary consumption data. Overall, a relatively good agreement was observed between the methods in pairwise comparison in Bland-Altman plots, with the methods disagreeing with 7% or less of the values. The intake estimates obtained with the two dietary consumption methods and one biomarker method are in line with earlier dietary estimates in the Norwegian population. The Margin of Exposure indicate a possible health risk concern from dietary acrylamide. This is the first study with a comparison in the same individuals of acrylamide intake estimates obtained with these methods.


Subject(s)
Acrylamide , Biological Monitoring , Adult , Humans , Diet , Norway , Hemoglobins , Eating
4.
Antioxidants (Basel) ; 11(8)2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36009280

ABSTRACT

The exposure to diesel exhaust emissions (DEE) contributes to negative health outcomes and premature mortality. At the same time, the health effects of the exposure to biodiesel exhaust emission are still in scientific debate. The aim of presented study was to investigate in an animal study the effects of exposure to DEE from two types of biodiesel fuels, 1st generation B7 biodiesel containing 7% of fatty acid methyl esters (FAME) or 2nd generation biodiesel (SHB20) containing 7% of FAME and 13% of hydrotreated vegetable oil (HVO), on the oxidative stress in testes and possible protective effects of dietary intervention with blackcurrant pomace (BC). Adult Fisher344/DuCrl rats were exposed by inhalation (6 h/day, 5 days/week for 4 weeks) to 2% of DEE from B7 or SHB20 fuel mixed with air. The animals from B7 (n = 14) and SHB20 (n = 14) groups subjected to filtered by a diesel particulate filter (DPF) or unfiltered DEE were maintained on standard feed. The rats from B7+BC (n = 12) or SHB20+BC (n = 12), exposed to DEE in the same way, were fed with feed supplemented containing 2% (m/m) of BC. The exposure to exhaust emissions from 1st and 2nd generation biodiesel resulted in induction of oxidative stress in the testes. Higher concentration of the oxidative stress markers thiobarbituric acid-reactive substances (TBARS), lipid hydroperoxides (LOOHs), 25-dihydroxycholesterols (25(OH)2Ch), and 7-ketocholesterol (7-KCh) level), as well as decreased level of antioxidant defense systems such as reduced glutathione (GSH), GSH/GSSG ratio, and increased level of oxidized glutathione (GSSG)) were found. Dietary intervention reduced the concentration of TBARS, 7-KCh, LOOHs, and the GSSG level, and elevated the GSH level in testes. In conclusion, DEE-induced oxidative stress in the testes was related to the biodiesel feedstock and the application of DPF. The SHB20 DEE without DPF technology exerted the most pronounced toxic effects. Dietary intervention with BC in rats exposed to DEE reduced oxidative stress in testes and improved antioxidative defense parameters, however the redox balance in the testes was not completely restored.

5.
Neurotoxicology ; 92: 33-48, 2022 09.
Article in English | MEDLINE | ID: mdl-35835329

ABSTRACT

Neural stem cells (NSCs) derived from human induced pluripotent stem cells were used to investigate effects of exposure to the food contaminant acrylamide (AA) and its main metabolite glycidamide (GA) on key neurodevelopmental processes. Diet is an important source of human AA exposure for pregnant women, and AA is known to pass the placenta and the newborn may also be exposed through breast feeding after birth. The NSCs were exposed to AA and GA (1 ×10-8 - 3 ×10-3 M) under 7 days of proliferation and up to 28 days of differentiation towards a mixed culture of neurons and astrocytes. Effects on cell viability was measured using Alamar Blue™ cell viability assay, alterations in gene expression were assessed using real time PCR and RNA sequencing, and protein levels were quantified using immunocytochemistry and high content imaging. Effects of AA and GA on neurodevelopmental processes were evaluated using endpoints linked to common key events identified in the existing developmental neurotoxicity adverse outcome pathways (AOPs). Our results suggest that AA and GA at low concentrations (1 ×10-7 - 1 ×10-8 M) increased cell viability and markers of proliferation both in proliferating NSCs (7 days) and in maturing neurons after 14-28 days of differentiation. IC50 for cell death of AA and GA was 5.2 × 10-3 M and 5.8 × 10-4 M, respectively, showing about ten times higher potency for GA. Increased expression of brain derived neurotrophic factor (BDNF) concomitant with decreased synaptogenesis were observed for GA exposure (10-7 M) only at later differentiation stages, and an increased number of astrocytes (up to 3-fold) at 14 and 21 days of differentiation. Also, AA exposure gave tendency towards decreased differentiation (increased percent Nestin positive cells). After 28 days, neurite branch points and number of neurites per neuron measured by microtubule-associated protein 2 (Map2) staining decreased, while the same neurite features measured by ßIII-Tubulin increased, indicating perturbation of neuronal differentiation and maturation.


Subject(s)
Induced Pluripotent Stem Cells , Neurotoxicity Syndromes , Acrylamide/toxicity , Astrocytes/metabolism , Brain-Derived Neurotrophic Factor , Epoxy Compounds , Female , Humans , Induced Pluripotent Stem Cells/metabolism , Infant, Newborn , Microtubule-Associated Proteins , Nestin , Neurons/metabolism , Pregnancy , Tubulin
7.
Neurotoxicology ; 88: 79-87, 2022 01.
Article in English | MEDLINE | ID: mdl-34757084

ABSTRACT

Persistent organic pollutants (POPs) can reach the fetal brain and contribute to developmental neurotoxicity. To explore the distribution of POPs to the fetal brain, we exposed chicken embryos to a POP mixture, containing 29 different compounds with concentrations based on blood levels measured in the Scandinavian human population. The mixture was injected into the allantois at embryonic day 13 (E13), aiming at a theoretical concentration of 10 times human blood levels. POPs concentrations in the brain were measured at 0.5, 1, 2, 4, 6, 24, 48, and 72 h after administration. Twenty-seven of the individual compounds were detected during at least one of the time-points analyzed. Generally, the concentrations of most of the measured compounds were within the order of magnitude of those reported in human brain samples. Differences in the speed of distribution to the brain were observed between the per- and polyfluoroalkyl substances (PFASs), which have protein binding potential, and the lipophilic polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and brominated flame retardants (BFRs). Based on pharmacokinetic modeling, PFASs were best described by a one compartment model. PFASs displayed relatively slow elimination (Kel) and persisted at high levels in the brain. Lipophilic OCPs and PCBs could be fitted to a 2-compartment model. These showed high levels in the brain relative to the dose administrated as calculated by area under the curve (AUC)/Dose. Altogether, our study showed that chicken is a suitable model to explore the distribution of POPs into the developing brain at concentrations which are relevant for humans.


Subject(s)
Brain/drug effects , Persistent Organic Pollutants/adverse effects , Animals , Brain/embryology , Brain/growth & development , Chick Embryo , Dose-Response Relationship, Drug , Embryonic Development/drug effects
8.
Environ Int ; 158: 106900, 2022 01.
Article in English | MEDLINE | ID: mdl-34607039

ABSTRACT

Exposure to chlorinated (Cl), brominated (Br) and perfluoroalkyl acid (PFAA) persistent organic pollutants (POPs) is associated with immunotoxicity and other adverse effects in humans and animals. Previous studies on POPs have mainly focused on single chemicals, while studies on complex mixtures are limited. Using DCF and luminol assays we examined effects on ROS generation in isolated human neutrophils, monocytes and lymphocytes, after in vitro exposure to a total mixture and sub-mixtures of 29 persistent compounds (Cl, Br, and PFAA). The mixtures were based on compounds prominent in blood, breast milk, and/or food. All mixture combinations induced ROS production in one or several of the cell models, and in some cases even at concentrations corresponding to human blood levels (compound range 1 pM - 16 nM). Whilst some interactions were detected (assessed using a mixed linear model), halogenated subgroups mainly acted additively. Mechanistic studies in neutrophils at 500× human levels (0.5 nM - 8 µM) indicated similar mechanisms of action for the Cl, PFAA, the combined PFAA + Cl and total (PFAA + Br + Cl) mixtures, and ROS responses appeared to involve ß2-adrenergic receptor (ß2AR) and Ca2+ signalling, as well as activation of NADPH oxidases. In line with this, the total mixture also increased cyclic AMP at levels comparable with the non-selective ßAR agonist, isoproterenol. Although the detailed mechanisms involved in these responses remain to be elucidated, our data show that POP mixtures at concentrations found in human blood, may trigger stress responses in circulating immune cells. Mixtures of POPs, further seemed to interfere with adrenergic pathways, indicating a novel role of ßARs in POP-induced effects.


Subject(s)
Environmental Pollutants , Persistent Organic Pollutants , Environmental Pollutants/toxicity , Female , Humans , Milk, Human , Reactive Oxygen Species , Signal Transduction
9.
Environ Int ; 155: 106592, 2021 10.
Article in English | MEDLINE | ID: mdl-34120007

ABSTRACT

When building the novel public mammalian toxicokinetic database (MamTKDB) we collected and included 3927 elimination half-lives (elimt1/2) for 1407 xenobiotics in various species (rat, human, mouse, dog, monkey, rabbit, cattle, pig, sheep, guinea pig, hamster, horse and goat) with specification of compartment (whole body, organ/tissue, cell type, medium) studied. Here we describe and analyse the collected data in MamTKDB 1.0. Most elimt1/2 are for humans and rats and their data differ in some ways: whereas the rat data are mainly for pesticides, the human data are mainly for pharmaceuticals and environmental contaminants. There are also differences in types of compartments studied and in metabolites followed: human elimt1/2 are mainly whole body based (i.e. based on blood plasma or excretion), animal data are additionally for various organs/tissues, cells or media. Contrary to human studies, animal studies regularly administrate radiolabeled (e.g. 14C) substances and distribution of both parent and eventual metabolites are followed, measuring the radioactivity. In rats, substances had been given through single, preconditioning or repeated administration. Single administration studies dominated, but repeated studies generally had longer elimt1/2 than single or preconditioning studies for which elimt1/2 were similar. Repeated administration studies should better ascertain steady state conditions throughout the body, a process involving time-dependent tissue loading, and the data show that for most substances, repeated studies are required to address bioaccumulation potential. About 65% of the substances in MamTKDB 1.0 fulfilled the octanol-water and octanol-air partitioning-based screening criteria (log Kow > 2 and log Koa > 5) for further bioaccumulation assessment and/or testing, and most of the substances with long elimt1/2 in both humans and rats fulfill these criteria. Of note, however, there are also many chemicals with log Kow > 2 with intermediate or short elimt1/2. Per- and polyfluoroalkyl substances (PFAS) stand out in that they often have log Koa < 5. Rats are poor toxicokinetic test models for perfluoroalkyl acids (PFAAs) for which pigs (and possibly mice) elimt1/2 data resemble those of humans better. Perfluorinated carboxylic acids (PFCAs) and perfluorinated sulfonic acids (PFSAs) of similar molecular weight had similar elimt1/2 in the species tested. For polychlorinated biphenyls (PCBs), elimt1/2 increases with the degree of chlorination in humans. In relation to other compartments, blood plasma/serum had among the shortest elimt1/2 in rats and often underrepresent elimt1/2 in tissues. Rat data were divided into 38 compartment (tissue or media) types out of which 20 had sufficient data for correlational tests. In general, there was a strong degree of correlation of rat elimt1/2 in-between most compartments, but there were also exceptions. Surprisingly, the correlation between brain and white fat was relatively weak. Interestingly, several substances or their metabolites bound to haemoglobin in red blood cells. MamTKDB 1.0 allows investigation on how certain chemical characteristics influence elimt1/2 and is a promising database for assessment of bioaccumulation potential.


Subject(s)
Fluorocarbons , Pesticides , Polychlorinated Biphenyls , Animals , Bioaccumulation , Cattle , Dogs , Fluorocarbons/analysis , Guinea Pigs , Horses , Humans , Mice , Pesticides/analysis , Plasma/chemistry , Rabbits , Rats , Sheep , Sulfonic Acids
10.
Chemosphere ; 276: 130123, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33714876

ABSTRACT

Male and female mice pups were exposed to a low and high dose of a human relevant mixture of persistent organic pollutants (POPs) during pregnancy and lactation. Most compounds detected in the dams were found in offspring brains. The mice offspring exhibited changed expression of hippocampal genes involved in cognitive function (Adora2a, Auts2, Crlf1, Chrnb2, Gdnf, Gnal, Kcnh3), neuroinflammation (Cd47, Il1a), circadian rhythm (Per1, Clock), redox signalling (Hmox2) and aryl hydrocarbon receptor activation (Cyp1b1). A few genes were differentially expressed in males versus females. Mostly, similar patterns of gene expression changes were observed between the low and high dose groups. Effects on learning and memory function measured in the Barnes maze (not moving, escape latency) were found in the high dose group when combined with moderate stress exposure (air flow from a fan). Mediation analysis indicated adaptation to the effects of exposure since gene expression compensated for learning disabilities (escape latency, walking distance and time spent not moving in the maze). Additionally, random forest analysis indicated that Kcnh3, Gnal, and Crlf1 were the most important genes for escape latency, while Hip1, Gnal and the low exposure level were the most important explanatory factors for passive behaviour (not moving). Altogether, this study showed transfer of POPs to the offspring brains after maternal exposure, modulating the expression level of genes involved in brain function.


Subject(s)
Maternal Exposure , Prenatal Exposure Delayed Effects , Animals , Brain , Female , Gene Expression , Hippocampus , Humans , Male , Maze Learning , Mice , Persistent Organic Pollutants , Pregnancy , Prenatal Exposure Delayed Effects/genetics
11.
Reprod Toxicol ; 101: 93-114, 2021 04.
Article in English | MEDLINE | ID: mdl-33617935

ABSTRACT

There is a worldwide concern on adverse health effects of dietary exposure to acrylamide (AA) due to its presence in commonly consumed foods. AA is formed when carbohydrate rich foods containing asparagine and reducing sugars are prepared at high temperatures and low moisture conditions. Upon oral intake, AA is rapidly absorbed and distributed to all organs. AA is a known human neurotoxicant that can reach the developing foetus via placental transfer and breast milk. Although adverse neurodevelopmental effects have been observed after prenatal AA exposure in rodents, adverse effects of AA on the developing brain has so far not been studied in humans. However, epidemiological studies indicate that gestational exposure to AA impair foetal growth and AA exposure has been associated with reduced head circumference of the neonate. Thus, there is an urgent need for further research to elucidate whether pre- and perinatal AA exposure in humans might impair neurodevelopment and adversely affect neuronal function postnatally. Here, we review the literature with emphasis on the identification of critical knowledge gaps in relation to neurodevelopmental toxicity of AA and its mode of action and we suggest research strategies to close these gaps to better protect the unborn child.


Subject(s)
Acrylamide/toxicity , Dietary Exposure/adverse effects , Neurotoxicity Syndromes/embryology , Acrylamide/pharmacokinetics , Animals , Embryonic Development/drug effects , Female , Food Handling , Humans , Maternal-Fetal Exchange , Pregnancy
12.
Environ Int ; 146: 106240, 2021 01.
Article in English | MEDLINE | ID: mdl-33186814

ABSTRACT

Exposure to persistent organic pollutants (POPs), encompassing chlorinated (Cl), brominated (Br) and perfluoroalkyl acid (PFAA) compounds is associated with adverse neurobehaviour in humans and animals, and is observed to cause adverse effects in nerve cell cultures. Most studies focus on single POPs, whereas studies on effects of complex mixtures are limited. We examined the effects of a mixture of 29 persistent compounds (Cl + Br + PFAA, named Total mixture), as well as 6 sub-mixtures on in vitro exposed rat cerebellar granule neurons (CGNs). Protein expression studies of cerebella from in vivo exposed mice offspring were also conducted. The selection of chemicals for the POP mixture was based on compounds being prominent in food, breast milk or blood from the Scandinavian human population. The Total mixture and sub-mixtures containing PFAAs caused greater toxicity in rat CGNs than the single or combined Cl/Br sub-mixtures, with significant impact on viability from 500x human blood levels. The potencies for these mixtures based on LC50 values were Br + PFAA mixture > Total mixture > Cl + PFAA mixture > PFAA mixture. These mixtures also accelerated induced lipid peroxidation. Protection by the competitive N-methyl-D-aspartate (NMDA) receptor antagonist 3-((R)-2-Carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP) indicated involvement of the NMDA receptor in PFAA and Total mixture-, but not Cl mixture-induced toxicity. Gene-expression studies in rat CGNs using a sub-toxic and marginally toxic concentration ((0.4 nM-5.5 µM) 333x and (1 nM-8.2 µM) 500x human blood levels) of the mixtures, revealed differential expression of genes involved in apoptosis, oxidative stress, neurotransmission and cerebellar development, with more genes affected at the marginally toxic concentration. The two important neurodevelopmental markers Pax6 and Grin2b were downregulated at 500x human blood levels, accompanied by decreases in PAX6 and GluN2B protein levels, in cerebellum of offspring mice from mothers exposed to the Total mixture throughout pregnancy and lactation. In rat CGNs, the glutathione peroxidase gene Prdx6 and the regulatory transmembrane glycoprotein gene Sirpa were highly upregulated at both concentrations. In conclusion, our results support that early-life exposure to mixtures of POPs can cause adverse neurodevelopmental effects.


Subject(s)
Environmental Pollutants , Persistent Organic Pollutants , Animals , Cerebellum , Environmental Pollutants/toxicity , Female , Humans , Mice , Neurons , Oxidative Stress , Rats
13.
Reprod Toxicol ; 100: 17-34, 2021 03.
Article in English | MEDLINE | ID: mdl-33333158

ABSTRACT

Halogenated persistent organic pollutants (POPs) like perfluorinated alkylated substances (PFASs), brominated flame retardants (BFRs), organochlorine pesticides and polychlorinated biphenyls (PCBs) are known to cause cancer, immunotoxicity, neurotoxicity and interfere with reproduction and development. Concerns have been raised about the impact of POPs upon brain development and possibly neurodevelopmental disorders. The developing brain is a particularly vulnerable organ due to dynamic and complex neurodevelopmental processes occurring early in life. However, very few studies have reported on the effects of POP mixtures at human relevant exposures, and their impact on key neurodevelopmental processes using human in vitro test systems. Aiming to reduce this knowledge gap, we exposed mixed neuronal/glial cultures differentiated from neural stem cells (NSCs) derived from human induced pluripotent stem cells (hiPSCs) to reconstructed mixtures of 29 different POPs using concentrations comparable to Scandinavian human blood levels. Effects of the POP mixtures on neuronal proliferation, differentiation and synaptogenesis were evaluated using in vitro assays anchored to common key events identified in the existing developmental neurotoxicity (DNT) adverse outcome pathways (AOPs). The present study showed that mixtures of POPs (in particular brominated and chlorinated compounds) at human relevant concentrations increased proliferation of NSCs and decreased synapse number. Based on a mathematical modelling, synaptogenesis and neurite outgrowth seem to be the most sensitive DNT in vitro endpoints. Our results indicate that prenatal exposure to POPs may affect human brain development, potentially contributing to recently observed learning and memory deficits in children.


Subject(s)
Cell Differentiation/drug effects , Halogenation , Neural Stem Cells/physiology , Persistent Organic Pollutants/toxicity , Synapses/physiology , Brain/drug effects , Brain/growth & development , Brain-Derived Neurotrophic Factor/analysis , Female , Gene Expression/drug effects , Humans , Models, Theoretical , Neural Stem Cells/chemistry , Neurites/drug effects , Neurodevelopmental Disorders/chemically induced , Persistent Organic Pollutants/blood , Pregnancy , Prenatal Exposure Delayed Effects , Receptors, Aryl Hydrocarbon/genetics
14.
Thyroid ; 29(8): 1147-1157, 2019 08.
Article in English | MEDLINE | ID: mdl-31298631

ABSTRACT

Background: Particulate matter (PM) air pollution is an environmental risk to public health. The prevalence of thyroid disease during pregnancy has increased rapidly in recent decades, but the available data on the relationships among air pollution, thyroid function, and birth outcomes in pregnant women, particularly in China, are scarce. We aimed to evaluate the association between maternal exposure to PM2.5 and its components and maternal and neonatal thyroid function and to investigate whether thyroid function acts as a mediator between air pollution and birth weight. Methods: In this prospective birth cohort study, the levels of maternal exposure to PM2.5 and its components during the first trimester were assessed in 433 pregnant women in Nanjing, China, enrolled during 2014-2015. We evaluated the levels of maternal exposure to PM2.5 and its six main constituents-organic matter (OM), black carbon (BC), sulfate (SO42-), nitrate (NO3-), ammonium (NH4+), and soil dust-using the V4.CH.02 product of the Dalhousie University Atmospheric Composition Analysis Group. The maternal serum-free thyroxine (fT4), thyrotropin (TSH), and thyroid peroxidase antibody (TPOAb) levels during the second trimester were measured through electrochemiluminescent microparticle immunoassays. The neonatal TSH levels were detected using an AutoDELFIA Neonatal TSH kit within 72 hours after birth, and the birth weight Z-score of each newborn was estimated. Results: Higher exposure to maternal PM2.5 and some components (BC and NH4+) decreased the maternal fT4 level (p < 0.05), and the birth weight Z-score was decreased (p < 0.05) by higher exposure to maternal PM2.5 and some components (OM, BC, NO3-, and NH4+). A mediation analysis clarified that the maternal fT4 levels explained 15.9%, 18.4%, and 20.9% of the associations of maternal PM2.5, BC, and NH4+ exposure with the birth weight Z-score, respectively (p < 0.05). After additional sensitivity analyses including only nonpreterm participants (n = 418) and non-TPOAb-positive participants (n = 415), the models remained stable. Conclusions: Our results suggest an inverse association between maternal exposure to PM2.5 and its components and the maternal fT4 levels. Maternal fT4 might act as a mediator between exposure to PM2.5 and its components and birth weight.


Subject(s)
Autoantibodies/immunology , Birth Weight , Iodide Peroxidase/immunology , Maternal Exposure , Particulate Matter , Thyrotropin/blood , Thyroxine/blood , Adult , Ammonium Compounds , Carbon , China , Dust , Female , Humans , Infant, Newborn , Male , Nitrates , Pregnancy , Pregnancy Trimester, First , Prospective Studies , Sulfates
16.
Environ Toxicol Pharmacol ; 67: 8-20, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30685595

ABSTRACT

Increased use of 1st and 2nd generation biofuels raises concerns about health effects of new emissions. We analyzed cellular and molecular lung effects in Fisher 344 rats exposed to diesel engine exhaust emissions (DEE) from a Euro 5-classified diesel engine running on B7: petrodiesel fuel containing 7% fatty acid methyl esters (FAME), or SHB20 (synthetic hydrocarbon biofuel): petrodiesel fuel containing 7% FAME and 13% hydrogenated vegetable oil. The Fisher 344 rats were exposed for 7 consecutive days (6 h/day) or 28 days (6 h/day, 5 days/week), both with and without diesel particle filter (DPF) treatment of the exhaust in whole body exposure chambers (n = 7/treatment). Histological analysis and analysis of cytokines and immune cell numbers in bronchoalveolar lavage fluid (BALF) did not reveal adverse pulmonary effects after exposure to DEE from B7 or SHB20 fuel. Significantly different gene expression levels for B7 compared to SHB20 indicate disturbed redox signaling (Cat, Hmox1), beta-adrenergic signaling (Adrb2) and xenobiotic metabolism (Cyp1a1). Exhaust filtration induced higher expression of redox genes (Cat, Gpx2) and the chemokine gene Cxcl7 compared to non-filtered exhaust. Exposure time (7 versus 28 days) also resulted in different patterns of lung gene expression. No genotoxic effects in the lungs were observed. Overall, exposure to B7 or SHB20 emissions suggests only minor effects in the lungs.


Subject(s)
Air Pollutants/toxicity , Biofuels , Lung/drug effects , Particulate Matter/toxicity , Vehicle Emissions/toxicity , Administration, Inhalation , Animals , Bronchoalveolar Lavage Fluid , Cytokines/metabolism , Lung/cytology , Lung/metabolism , Lung/pathology , Male , Rats, Inbred F344
17.
Inhal Toxicol ; 30(7-8): 299-312, 2018.
Article in English | MEDLINE | ID: mdl-30569778

ABSTRACT

While the impact of emissions from combustion of fossil fuel on human health has been extensively studied, current knowledge of exhaust exposure from combustion of biofuels provides limited and inconsistent information about its neurotoxicity. The objective of the present work was to compare the gene expression patterns in rat frontal cortex and hippocampus after exposure to diesel exhaust emissions (DEE) from combustion of two 1st generation fuels, 7% fatty acid methyl esters (FAME) (B7) and 20% FAME (B20), and a 2nd generation 20% FAME/hydrotreated vegetable oil (SHB20: synthetic hydrocarbon biofuel), with and without diesel particulate filter (DPF). The Fisher 344 rats (n = 7/treatment) were exposed to DEE for 7 days (6h/day), and for 28 days (6h/day, 5 days/week) in whole body exposure chambers. The controls were breathing room air. Brain histological examinations did not reveal any adverse exposure-related effects of DEE in frontal cortex or in hippocampus. Gene expression analysis showed that several genes associated with antioxidant defenses and inflammation were statistically differently expressed in DEE exposed animals versus control. In addition, the gene expression changes between the exposure groups were compared, where the observed rank order in frontal cortex was B7 > B20 > SHB20 after 7 days of exposure, and SHB20 > B7 = B20 after 28 days of exposure. In the hippocampus, the rank order was B7 > SHB20 > B20. Effect of DPF treatment was observed for Tnf only. Overall, moderate increases in bio-components in diesel blends do not appear to result in dramatic alterations in gene expression or adverse histopathological effects.


Subject(s)
Biofuels/toxicity , Frontal Lobe/drug effects , Gene Expression/drug effects , Hippocampus/drug effects , Inhalation Exposure/adverse effects , Vehicle Emissions/toxicity , Animals , Biofuels/analysis , Dose-Response Relationship, Drug , Frontal Lobe/metabolism , Frontal Lobe/pathology , Hippocampus/metabolism , Hippocampus/pathology , Male , Rats, Inbred F344 , Vehicle Emissions/analysis
18.
Toxicol Appl Pharmacol ; 354: 196-214, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29550511

ABSTRACT

Epidemiological studies have demonstrated that air pollution particulate matter (PM) and adsorbed toxicants (organic compounds and trace metals) may affect child development already in utero. Recent studies have also indicated that PM may be a risk factor for neurodevelopmental disorders (NDDs). A pattern of increasing prevalence of attention deficit/hyperactivity disorder (ADHD) has been suggested to partly be linked to environmental pollutants exposure, including PM. Epidemiological studies suggest associations between pre- or postnatal exposure to air pollution components and ADHD symptoms. However, many studies are cross-sectional without possibility to reveal causality. Cohort studies are often small with poor exposure characterization, and confounded by traffic noise and socioeconomic factors, possibly overestimating the study associations. Furthermore, the mechanistic knowledge how exposure to PM during early brain development may contribute to increased risk of ADHD symptoms or cognitive deficits is limited. The closure of this knowledge gap requires the combined use of well-designed longitudinal cohort studies, supported by mechanistic in vitro studies. As ADHD has profound consequences for the children affected and their families, the identification of preventable risk factors such as air pollution exposure should be of high priority.


Subject(s)
Adolescent Behavior/drug effects , Air Pollutants/adverse effects , Attention Deficit Disorder with Hyperactivity/chemically induced , Brain/drug effects , Child Behavior/drug effects , Child Development/drug effects , Environmental Exposure/adverse effects , Particulate Matter/adverse effects , Adolescent , Adolescent Development/drug effects , Age Factors , Animals , Attention Deficit Disorder with Hyperactivity/epidemiology , Attention Deficit Disorder with Hyperactivity/physiopathology , Attention Deficit Disorder with Hyperactivity/psychology , Brain/growth & development , Child , Child, Preschool , Female , Humans , Incidence , Infant , Infant, Newborn , Male , Pregnancy , Prenatal Exposure Delayed Effects , Prevalence , Risk Assessment , Risk Factors
19.
Sci Rep ; 8(1): 2308, 2018 02 02.
Article in English | MEDLINE | ID: mdl-29396538

ABSTRACT

The cyanobacterial toxins ß-methylamino-L-alanine (L-BMAA) and microcystin-LR (MC-LR; a potent liver toxin) are suspected to cause neurological disorders. Adult male C57BL/6JOlaHsd mice aged approximately 11 months were subcutaneously injected for five consecutive days with L-BMAA and microcystin-LR alone, or as a mixture. A dose-range study determined a tolerable daily dose to be ~31 µg MC-LR/kg BW/day based on survival, serum liver status enzymes, and relative liver and kidney weight. Mice tolerating the first one-two doses also tolerated the subsequent three-four doses indicating adaptation. The LD50 was 43-50 µg MC-LR/kg BW. Long-term effects (up to 10 weeks) on spatial learning and memory performance was investigated using a Barnes maze, were mice were given 30 µg MC-LR/kg BW and/or 30 mg L-BMAA/kg BW either alone or in mixture for five consecutive days. Anxiety, general locomotor activity, willingness to explore, hippocampal and peri-postrhinal cortex dependent memory was investigated after eight weeks using Open field combined with Novel location/Novel object recognition tests. Toxin exposed animals did not perform worse than controls, and MC-LR exposed animals performed somewhat better during the first Barnes maze re-test session. MC-LR exposed mice rapidly lost up to ~5% body weight, but regained weight from day eight.


Subject(s)
Amino Acids, Diamino/toxicity , Cognition/drug effects , Enzyme Inhibitors/toxicity , Excitatory Amino Acid Agonists/toxicity , Microcystins/toxicity , Amino Acids, Diamino/administration & dosage , Animals , Cyanobacteria Toxins , Enzyme Inhibitors/administration & dosage , Excitatory Amino Acid Agonists/administration & dosage , Injections, Subcutaneous , Kidney/pathology , Lethal Dose 50 , Liver/pathology , Liver Function Tests , Male , Marine Toxins , Memory/drug effects , Mice, Inbred C57BL , Microcystins/administration & dosage , Spatial Learning/drug effects , Survival Analysis
20.
Neurotox Res ; 33(4): 824-836, 2018 05.
Article in English | MEDLINE | ID: mdl-29101721

ABSTRACT

Environmental stressors inducing oxidative stress such as ionizing radiation may influence cognitive function and neuronal plasticity. Recent studies have shown that transgenic mice deficient of DNA glycosylases display unexpected cognitive deficiencies related to changes in gene expression in the hippocampus. The main objectives of the present study were to determine learning and memory performance in C57BL/6NTac 8-oxoguanine DNA glycosylase 1 (Ogg1)+/- (heterozygote) and Ogg1+/+ (wild type, WT) mice, to study whether a single acute X-ray challenge (0.5 Gy, dose rate 0.457 Gy/min) influenced the cognitive performance in the Barnes maze, and if such differences were related to changes in gene expression levels in the hippocampus. We found that the Ogg1+/- mice exhibited poorer early-phase learning performance compared to the WT mice. Surprisingly, X-ray exposure of the Ogg1+/- animals improved their early-phase learning performance. No persistent effects on memory in the late-phase (6 weeks after irradiation) were observed. Our results further suggest that expression of 3 (Adrb1, Il1b, Prdx6) out of in total 35 genes investigated in the Ogg1+/- hippocampus is correlated to spatial learning in the Barnes maze.


Subject(s)
Cognition Disorders/genetics , Cognition Disorders/therapy , DNA Glycosylases/deficiency , Recovery of Function/radiation effects , X-Ray Therapy , Analysis of Variance , Animals , DNA Glycosylases/genetics , Disease Models, Animal , Dose-Response Relationship, Radiation , G-Protein-Coupled Receptor Kinase 2/genetics , G-Protein-Coupled Receptor Kinase 2/metabolism , Gene Expression/genetics , Gene Expression/radiation effects , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Male , Maze Learning/radiation effects , Mice , Mice, Inbred C57BL , Mice, Transgenic , Peroxiredoxin VI/genetics , Peroxiredoxin VI/metabolism , RNA, Messenger/metabolism , Reaction Time/radiation effects , Recovery of Function/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...