Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Cancer Res Commun ; 4(5): 1253-1267, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38592213

ABSTRACT

Exercise mobilizes cytotoxic lymphocytes to blood which may allow superior cell products to be harvested and manufactured for cancer therapy. Gamma-Delta (γδ) T-cells have shown promise for treating solid tumors, but there is a need to increase their potency against hematologic malignancies. Here, we show that human γδ T-cells mobilized to blood in response to just 20 minutes of graded exercise have surface phenotypes and transcriptomic profiles associated with cytotoxicity, adhesion, migration, and cytokine signaling. Following 14 days ex vivo expansion with zoledronic acid and IL2, exercise mobilized γδ T-cells had surface phenotypes and transcriptomic profiles associated with enhanced effector functions and demonstrated superior cytotoxic activity against multiple hematologic tumors in vitro and in vivo in leukemia-bearing xenogeneic mice. Infusing humans with the ß1+ß2-agonist isoproterenol and administering ß1 or ß1+ß2 antagonists prior to exercise revealed these effects to be ß2-adrenergic receptor (AR) dependent. Antibody blocking of DNAM-1 on expanded γδ T-cells, as well as the DNAM-1 ligands PVR and Nectin-2 on leukemic targets, abolished the enhanced antileukemic effects of exercise. These findings provide a mechanistic link between exercise, ß2-AR activation, and the manufacture of superior γδ T-cell products for adoptive cell therapy against hematologic malignancies. SIGNIFICANCE: Exercise mobilizes effector γδ T-cells to blood via ß2-adrenergic signaling which allows for generation of a potent expanded γδ T-cell product that is highly cytotoxic against hematologic malignancies.


Subject(s)
Antigens, Differentiation, T-Lymphocyte , Exercise , Receptors, Adrenergic, beta-2 , Up-Regulation , Animals , Humans , Male , Mice , Antigens, Differentiation, T-Lymphocyte/metabolism , Cell Adhesion Molecules/metabolism , Cell Line, Tumor , Exercise/physiology , Leukemia/immunology , Leukemia/therapy , Receptors, Adrenergic, beta-2/metabolism , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL