Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Pestic Biochem Physiol ; 161: 61-67, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31685198

ABSTRACT

Extensive use of pyrethroids for malaria control in Africa has led to widespread pyrethroid resistance in the two major African vectors of malaria An. gambiae and An. funestus. This is often associated with constitutively elevated levels of cytochrome P450s involved with pyrethroid metabolism and detoxification. P450s have the capacity to metabolise diverse substrates, which raises concerns about their potential to cause cross-resistance. A bank of seven recombinant P450s from An. gambiae (CYPs 6M2, 6P2, 6P3, 6P4, 6P5, 9J5) and An. funestus (CYP6P9a) commonly associated with pyrethroid resistance were screened against twelve insecticides representing the five major classes of insecticides recommended by WHO for malaria control; permethrin, etofenprox and bifenthrin (type I pyrethroids), deltamethrin, lambda cyhalothrin and cypermethrin (type II pyrethroids), DDT (organochlorine), bendiocarb (carbamate), malathion, pirimiphos methyl and fenitrothion (organophosphates) and pyriproxyfen (juvenile hormone analogue). DDT was not metabolised by the P450 panel, while bendiocarb was only metabolised by CYP6P3. Pyrethroids and pyriproxyfen were largely susceptible to metabolism by the P450 panel, as were organophosphates, which are activated by P450s. Primiphos-methyl is increasingly used for malaria control. Examination of the pirimiphos-methyl metabolites generated by CYP6P3 revealed both the active pirimiphos-methyl-oxon form and the inactive oxidative cleavage product 2-diethylamino-6-hydroxy-4-methylpyrimidine. The inhibition profile of CYPs 6M2, 6P2, 6P3, 6P9a and 9J5 was also examined using diethoxyfluorescein (DEF) as the probe substrate. Bendiocarb was the weakest inhibitor with IC50 > 100 µM across the P450 panel, while CYP6M2 showed strongest inhibition by malathion (IC50 0.7 µM). The results suggest that P450s present at elevated levels in two major Anopheline vectors of malaria in Africa have the capacity to metabolise a diverse range of pyrethroid and organophosphate insecticides as well as pyriproxyfen that could impact vector control.


Subject(s)
Anopheles/drug effects , Anopheles/enzymology , Cytochrome P-450 Enzyme System/metabolism , Insecticide Resistance , Malaria/transmission , Mosquito Vectors/drug effects , Pyrethrins/pharmacology , Animals , Anopheles/classification , Mosquito Control/methods , Mosquito Vectors/parasitology , Organothiophosphorus Compounds/pharmacology , Species Specificity
2.
Insect Biochem Mol Biol ; 78: 50-57, 2016 11.
Article in English | MEDLINE | ID: mdl-27613592

ABSTRACT

Pyrethroid resistance is widespread in the malaria vector Anopheles gambiae leading to concerns about the future efficacy of bednets with pyrethroids as the sole active ingredient. The incorporation of pyriproxyfen (PPF), a juvenile hormone analogue, into pyrethroid treated bednets is being trialed in Africa. Pyrethroid resistance is commonly associated with elevated levels of P450 expression including CYPs 6M2, 6P2, 6P3, 6P4, 6P5, 6Z2 and 9J5. Having expressed these P450s in E. coli we find all are capable of metabolizing PPF. Inhibition of these P450s by permethrin, deltamethrin and PPF was also examined. Deltamethrin and permethrin were moderate inhibitors (IC50 1-10 µM) of diethoxyfluorescein (DEF) activity for all P450s apart from CYP6Z2 (IC50 > 10 µM), while PPF displayed weaker inhibition of all P450s (IC50 > 10 µM) except CYP's 6Z2 and 6P2 (IC50 1-10 µM). We found evidence of low levels of cross resistance between PPF and other insecticide classes by comparing the efficacy of PPF in inhibiting metamorphosis and inducing female sterility in an insecticide susceptible strain of An. gambiae and a multiple resistant strain from Cote d'Ivoire.


Subject(s)
Anopheles/drug effects , Anopheles/physiology , Cytochrome P-450 Enzyme System/metabolism , Escherichia coli/genetics , Insect Proteins/metabolism , Insecticide Resistance , Insecticides/pharmacology , Pyridines/pharmacology , Animals , Cote d'Ivoire , Female , Metamorphosis, Biological , Organisms, Genetically Modified , Reproduction
3.
Rapid Commun Mass Spectrom ; 29(17): 1545-1555, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-28339156

ABSTRACT

RATIONALE: This paper describes a strategy for the profiling and identification of metabolites based on chemical group classification using high-resolution accurate mass (HR/AM) full scan mass spectrometry (MS) and All-Ion fragmentation (AIF) MS2 data. METHODS: The proposed strategy uses a hybrid quadrupole Orbitrap (Q-Exactive) employing stepped normalised collision energy (NCE) at 35% and 80% to produce key chemically diagnostic product ions from full coverage of the product ion spectrum. This approach allows filtering of high-resolution AIF MS2 data in order to identify parent-related compounds produced following incubation in rat liver microsomes (RLMs). RESULTS: An antidepressant drug, nefazodone (NEF), was selected as the model test compound to demonstrate the proposed workflow for metabolite profiling. This resulted in the identification of three indicative chemical groups within NEF: triazolone, phenoxy and chlorophenylpiperazine. High-resolution mass spectrometry provides increased specificity to distinguish between two characteristic product ion masses m/z 154.0975 (C7 H12 N3 O) and 154.0419 (C8 H9 NCl), which are not fully resolved by spectrometers operating at nominal mass resolution, indicative of compounds containing the triazolone and chlorophenylpiperazine moieties, respectively. CONCLUSIONS: This post-acquisition processing strategy provides comprehensive detection and identification of high- and low-level metabolites from an 'all-in-one' analysis. This enables functional groups to be systematically traced across a wide range of metabolites, leading to the successful identification of 28 in vitro NEF-related metabolites. In our hands this approach has been applied to agrochemical environmental fate and dietary metabolism studies, as well as metabolomics and biomarker analysis. Copyright © 2015 John Wiley & Sons, Ltd.

4.
Food Chem ; 133(2): 536-43, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-25683430

ABSTRACT

A reversed phase liquid chromatographic-tandem mass spectrometric method with simple solvent extraction and purification by solid phase extraction (SPE) has been developed for the determination of coccidiostats in milk. For sample preparation matrix solid phase dispersion, extraction by organic solvent and SPE with different cartridges were also tested. The compounds determined include lasalocid, narasin, salinomycin, monensin, semduramicin, maduramicin, robenidine, decoquinate, halofuginone, nicarbazin and diclazuril. Main steps of the method are addition of acetonitrile to the milk samples, centrifugation, removal of matrix by SPE, concentration by evaporation and LC-MS-MS determination. During a 15 min time segmented chromatographic run compounds are ionised either positively or negatively. Calculated recoveries range between 77.1% and 118.2%. Maximum levels are in the range of 1-20 µg/kg. The developed method was validated in line with the requirements of Commission Decision 2002/657/EC (2002). It is applicable for control of coccidiostat residues in milk as indicated in Regulation 124/2009/EC (2009).


Subject(s)
Chromatography, Liquid/methods , Coccidiostats/analysis , Milk/chemistry , Solid Phase Extraction/methods , Tandem Mass Spectrometry/methods , Animals
SELECTION OF CITATIONS
SEARCH DETAIL