Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
Anal Methods ; 15(2): 154-163, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36533314

ABSTRACT

This work investigated the potential of microwave-induced plasma optical emission spectrometry (MIP-OES) for urine analysis using a complex matrix containing carbon and high concentrations of easily ionizable elements (EIEs). The goals were to study interferences originating from the urine matrix for 14 analytes with total energies varying from 1.85 to 12.07 eV, along with strategies to correct matrix effects and compare the results with those reported in the literature using inductively coupled plasma optical emission spectrometry (ICP-OES). It was found that the urine matrix caused suppression of the signals for some elements and increased them for others. Therefore, an internal standardization calibration method and three levels of dilution, i.e., 2-, 20-, and 200-fold, were applied as strategies to correct non-spectral interferences. Also, Ga, Ge, Pd, Rh, Sc and Y and four molecular species present in the nitrogen plasma (i.e., CN, N2, N2+, and OH) were investigated as potential internal standards (ISs). The accuracy and precision were evaluated by addition and recovery experiments and best results were obtained using ISs Ge, Rh and Sc for 20-fold dilution and N2+ for 200-fold dilution. The LODs ranged from 0.33 to 329 µg L-1 and deviations were lower than 11%. The combined use of these strategies led to successful urine analysis for a spiked sample by MIP-OES.


Subject(s)
Spectrum Analysis , Limit of Detection
2.
Anal Methods ; 13(46): 5670-5678, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34792519

ABSTRACT

A simple, sensitive and matrix-effect free analytical method for simultaneous determination of Cd, Hg and Pb in drug samples (i.e., commercial dosage tablets) by inductively coupled plasma optical emission spectrometry (ICP OES) has been developed. According to the United States Pharmacopeia (USP) Chapter 232, those metals are considered elemental impurities from class 1 and they must be assessed in pharmaceutical production as well as in quality control evaluation. In order to increase the sensitivity of the analysis, dispersive liquid-liquid microextraction (DLLME) was performed and seven factors affecting analyte extraction were optimized by multivariate analysis. A microvolume of analyte enriched phase was directly introduced into the plasma using a multi-nebulizer, providing a high enrichment factor. When compared to conventional ICP OES analysis, DLLME improves the limit of quantitation (LOQ) values on average 40-fold for all analytes. Consequently, LOQ values were significantly lower than their permissible daily exposure limits for oral drugs. Accuracy was evaluated by addition and recovery experiments following USP recommendations in eight commercial drug samples. Recovery and RSD values were within the range of 90-108% and 1-9%, respectively.


Subject(s)
Liquid Phase Microextraction , Mercury , Cadmium , Lead , Spectrum Analysis , United States
3.
Anal Chim Acta ; 1185: 339052, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34711330

ABSTRACT

A simple, fast, sensitive and green pretreatment method for determination of Cd, Co, Hg, Ni, Pb and V in oral and parenteral drug samples using inductively coupled plasma optical emission spectrometry (ICP OES) has been developed. According to United States Pharmacopoeia (USP), those metals must be reported in all pharmaceutical products for quality control evaluation (i.e., elemental impurities from classes 1 and 2A of USP Chapter 232). To improve the analytical capabilities of ICP OES, a dispersive liquid-liquid microextraction (DLLME) has performed using a safe, cheap and biodegradable deep eutectic solvent (DES) as extractant solvent (a mixture of 2:1 M ratio of DL-menthol and decanoic acid). Seven parameters affecting the microextraction efficiency have carefully optimized by multivariate analysis. Under optimized conditions, the DES-based DLLME-ICP OES procedure improved limit of quantitation (LOQ) values on range from 12 to 85-fold and afforded an enrichment factor on average 60-times higher than those obtained to direct ICP OES analysis. Consequently, LOQ values for Cd, Co, Hg, Ni, Pb and V have been on average 10-times lower than target limits recommended for drugs from parenteral route of administration. Trueness has evaluated by addition and recovery experiments following USP recommendations for three oral drug samples in liquid dosage form and three parenteral drugs. Recovery and RSD values have been within the range of 90-109% and 1-6%, respectively. All analytes were below the respectives LOQ values, hence, lower than the limits proposed by USP Chapter 232.


Subject(s)
Liquid Phase Microextraction , Pharmaceutical Preparations , Limit of Detection , Solvents , Spectrum Analysis
4.
Inorg Chem ; 59(20): 15004-15018, 2020 Oct 19.
Article in English | MEDLINE | ID: mdl-32997499

ABSTRACT

In this paper, a series of new ruthenium complexes of the general formula [Ru(NS)(dpphpy)(dppb)]PF6 (Ru1-Ru3), where dpphpy = diphenyl-2-pyridylphosphine, NS ligands = 2-thiazoline-2-thiol (tzdt, Ru1), 2-mercaptopyrimidine (pySm, Ru2), and 4,6-diamino-2-mercaptopyrimidine (damp, Ru3), and dppb = 1,4-bis(diphenylphosphino)butane, were synthesized and characterized by elemental analysis, spectroscopic techniques (IR, UV/visible, and 1D and 2D NMR), and X-ray diffraction. In the characterization, the correlation between the phosphorus atoms and their respective aromatic hydrogen atoms of the compounds in the assignment stands outs, by 1H-31P HMBC experiments. The compounds show anticancer activities against A549 (lung) and MDA-MB-231 (breast) cancer cell lines, higher than the clinical drug cisplatin. All of the complexes are more cytotoxic against the cancer cell lines than against the MRC-5 (lung) and MCF-10A (breast) nontumorigenic human cell lines. For A549 tumor cells, cell cycle analysis upon treatment with Ru2 showed that it inhibits the mitotic phase because arrest was observed in the Sub-G1 phase. Additionally, the compound induces cell death by an apoptotic pathway in a dose-dependent manner, according to annexin V-PE assay. The multitargeted character of the compounds was investigated, and the biomolecules were DNA, topoisomerase IB, and proteasome, as well as the fundamental biomolecule in the pharmacokinetics of drugs, human serum albumin. The experimental results indicate that the complexes do not target DNA in the cells. At low concentrations, the compounds showed the ability to partially inhibit the catalytic activity of topoisomerase IB in the process of relaxation of the DNA plasmid. Among the complexes assayed in cultured cells, complex Ru3 was able to diminish the proteasomal chymotrypsin-like activity to a greater extent.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , DNA Topoisomerases, Type I/metabolism , Proteasome Inhibitors/pharmacology , Topoisomerase I Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Coordination Complexes/chemical synthesis , Drug Screening Assays, Antitumor , G1 Phase Cell Cycle Checkpoints/drug effects , Humans , Phosphines/chemical synthesis , Phosphines/pharmacology , Proteasome Inhibitors/chemical synthesis , Ruthenium/chemistry , Sulfhydryl Compounds/chemical synthesis , Sulfhydryl Compounds/pharmacology , Topoisomerase I Inhibitors/chemical synthesis
5.
Ecotoxicol Environ Saf ; 202: 110892, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32593098

ABSTRACT

Carbon nanotubes presence in the environment increases every year because of exponential industrial production around the world. In aquatic environments, carbon nanotubes can interact with other pollutants based on their adsorbent surface chemistry properties. Heavy metal ions represent one of the biggest concerns in water resources nowadays due to anthropogenic activities, in which cadmium (Cd) is one of the most harmful metal for aquatic organisms. This study investigated the influence of two co-exposure protocols differing by the order of interaction of oxidized multiwalled carbon nanotubes (ox-MWCNT) with Cd in zebrafish liver cell line (ZFL). The ox-MWCNT was characterized, Cd content in culture medium and uptake by cells were quantified using ICP-MS and, the reactive oxygen species (ROS), the biotransformation enzymes activity of phase I and II as well as the antioxidants defenses and oxidative damage were analyzed. The effects on the cell cycle were investigated by flow cytometry and DNA damage by comet assay. The exposure to ox-MWCNT alone decreased the activity of catalase, glutathione peroxidase, and glutathione S-transferase and altered the cell cycle with a reduction of cells in the G2/M phase. Cd exposure alone decreased the activity of catalase and glutathione S-transferase, increased ROS, metallothionein, and lipid peroxidation content and causes genotoxicity in the cells. Despite different incubation protocol, the co-exposure ox-MWCNT-Cd increased the Cd content in ZFL cells after 24 h exposure, increased ROS production and DNA damage without differences between them. Our results showed the modulation of ox-MWCNT on Cd effects and contributed to future co-exposure toxicity investigations and nanosafety regulations involving carbon nanomaterials and aquatic pollutants.


Subject(s)
Cadmium/toxicity , Nanotubes, Carbon/toxicity , Water Pollutants, Chemical/toxicity , Animals , Antioxidants/metabolism , Catalase/metabolism , Cell Cycle , Cell Line , Comet Assay , DNA Damage , Glutathione Peroxidase/metabolism , Lipid Peroxidation/drug effects , Metals, Heavy/pharmacology , Oxidation-Reduction , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Toxicity Tests , Zebrafish/metabolism
6.
Heliyon ; 6(2): e03359, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32083212

ABSTRACT

Elemental impurities in drug samples can generate unwanted pharmacological-toxicological effects, therefore they must be carefully monitored. In order to update the elemental analysis of pharmaceutical products, new regulations for elemental impurities were published by the United States Pharmacopoeia (USP). This work presents elemental analysis of 23 analytes in omeprazole drug samples from seven different commercial brands considering reference, similar and generic medicines using inductively coupled plasma mass spectrometry (ICP-MS). Microwave-assisted digestion using 2.0 mol L-1 HNO3 (partial digestion) was applied successfully for omeprazole drugs. Most analytes were below the respective limits of quantification, except for As, Ba, Cd, Co, Cu, Cr, Li, Mo, Ni, Pb, Sb and V. However, the determined concentrations for these analytes were lower than the limits proposed by the USP Chapter 232 and similar for all products, inferring that for the seven analyzed samples there is no difference among reference, similar and generic drugs considering contaminants contents. Discussions considering potential risks of elemental contamination taking into account diverse brands were presented.

7.
Anal Chim Acta ; 1065: 1-11, 2019 Aug 13.
Article in English | MEDLINE | ID: mdl-31005141

ABSTRACT

This work proposed a procedure for microwave-assisted sample preparation of medicines using diluted nitric acid followed by determination of elemental impurities using inductively coupled plasma optical emission spectrometry (ICP OES) and inductively coupled plasma mass spectrometry (ICP-MS) according to the United States Pharmacopeia Chapters 232 and 233. Three solutions, i.e. inverse aqua regia, 7.0 and 2.0 mol L-1 HNO3, were evaluated for microwave-assisted digestion of nine drugs samples. The applicability of each digestion procedure was assessed by comparison of analyte concentrations determined using total (reference procedure) and partial digestions (proposed procedure) as well as by determining dissolved carbon content and evaluating matrix effects. There were none significant differences at a 95% confidence level among the concentrations determined applying reference and proposed procedures. Internal standardization (ICP OES) and aerosol dilution (ICP-MS) were applied for minimization and correction of matrix effects. Addition and recovery experiments were performed according to oral permissible daily exposures values specific for each element and each sample was spiked with element concentrations of 0.5J and 1.5J in order to check accuracies for 24 analytes. Recoveries ranged from 70 to 138% for ICP OES and from 72 to 128% for ICP-MS, for all elements but Os. All analytes were below the respective limits of quantification when applying all sample preparation procedures, except As, Ba, Co, Cu, Cr, Mo, Ni, Pb, Sb, Sn, Tl and V, however the determined concentrations for these elements were lower than the limits proposed by Chapter 232.


Subject(s)
Microwaves , Pharmaceutical Preparations/analysis , Pharmacopoeias as Topic , Trace Elements/analysis , Mass Spectrometry , Nitric Acid/chemistry , Tablets/analysis , United States
8.
Front Chem ; 6: 504, 2018.
Article in English | MEDLINE | ID: mdl-30483492

ABSTRACT

Applications, advantages, and limitations of the traditional external standard calibration, matrix-matched calibration, internal standardization, and standard additions, as well as the non-traditional interference standard method, standard dilution analysis, multi-isotope calibration, and multispecies calibration methods are discussed.

9.
Anal Bioanal Chem ; 410(3): 1157-1162, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29167938

ABSTRACT

Multi-isotope calibration (MICal) is a novel approach to calibration for inductively coupled plasma mass spectrometry (ICP-MS). In MICal, only two calibration solutions are required: solution A, composed of 50% v v-1 of sample and 50% v v-1 of a standard solution containing the analytes, and solution B, composed of 50% v v-1 of sample and 50% v v-1 of a blank solution. MICal is based on monitoring the signal intensities of several isotopes of the same analyte in solutions A and B. By plotting the analytical signals from solution A in the x-axis, and from solution B in the y-axis, the analyte concentration in the sample is calculated using the slope of that graph and the concentration of the reference standard added to solution A. As both solutions contain the same amount of sample, matrix-matching is easily achieved. In this proof-of-concept study, MICal was applied to the determination of Ba, Cd, Se, Sn, and Zn in seven certified reference materials with different matrices (e.g., plant materials, flours, and water). In most cases, MICal results presented no statistical difference from the certified values at a 95% confidence level. The new strategy was also compared with traditional calibration methods such as external calibration, internal standardization and standard additions, and recoveries were generally better for MICal. This is a simple, accurate, and fast alternative method for matrix-matching calibration in ICP-MS. Graphical abstract Multi-isotope calibration: fast and innovative matrix-matching calibration for ICP-MS.

10.
Talanta ; 178: 805-810, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29136898

ABSTRACT

This study investigated the capability of High Matrix Introduction (HMI) strategy for analysis of dialysis solution and urine samples using inductively coupled plasma mass spectrometry. The use of HMI enables the direct introduction of urine samples and dialysis solutions 2-fold diluted with 0.14molL-1 HNO3. Bismuth, Ge, Ir, Li, Pt, Rh, Sc and Tl were evaluated as internal standards for Al, Ag, As, Be, Cd, Cr, Pb, Sb, Se, Tl, and Hg determination in dialysis solution and As, Cd, Hg and Pb determination in urine samples. Helium collision cell mode (4.5mLmin-1) was efficient to overcome polyatomic interferences in As, Se and Cr determinations. Mercury memory effects were evaluated by washing with 0.12molL-1 HCl or an alkaline diluent solution prepared with n-butanol, NH4OH, EDTA, and Triton X-100. This later solution was efficient for avoiding Hg memory effects in 6h of analysis. Linear calibration curves were obtained for all analytes and detection limits were lower than maximum amounts allowed by Brazilian legislations. Recoveries for all analytes in dialysis solutions and urine samples ranged from 82% to 125% and relative standard deviations for all elements and samples were lower than 7%. Analysis of control internal urine samples was in agreement with certified values at 95% confidence level (t-test; p < 0.05).


Subject(s)
Mass Spectrometry/methods , Metals, Heavy/analysis , Aerosols , Humans , Mass Spectrometry/standards , Metals, Heavy/urine , Plasma Gases/chemistry , Reference Standards
11.
Anal Chim Acta ; 982: 31-36, 2017 Aug 22.
Article in English | MEDLINE | ID: mdl-28734363

ABSTRACT

Multi-energy calibration (MEC) is a novel strategy that explores the capacity of several analytes of generating analytical signals at many different wavelengths (transition energies). Contrasting with traditional methods, which employ a fixed transition energy and different analyte concentrations to build a calibration plot, MEC uses a fixed analyte concentration and multiple transition energies for calibration. Only two calibration solutions are required in combination with the MEC method. Solution 1 is composed of 50% v v-1 sample and 50% v v-1 of a standard solution containing the analytes. Solution 2 has 50% v v-1 sample and 50% v v-1 blank. Calibration is performed by running each solution separately and monitoring the instrument response at several wavelengths for each analyte. Analytical signals from solutions 1 and 2 are plotted on the x-axis and y-axis, respectively, and the analyte concentration in the sample is calculated from the slope of the resulting calibration curve. The method has been applied to three different atomic spectrometric techniques (ICP OES, MIP OES and HR-CS FAAS). Six analytes were determined in complex samples (e.g. green tea, cola soft drink, cough medicine, soy sauce, and red wine), and the results were comparable with, and in several cases more accurate than, values obtained using the traditional external calibration, internal standardization, and standard additions methods. MEC is a simple, fast and efficient matrix-matching calibration method. It may be applied to any technique capable of simultaneous or fast sequential monitoring of multiple analytical signals.


Subject(s)
Calibration , Spectrophotometry, Atomic , Antitussive Agents/analysis , Carbonated Beverages/analysis , Reference Standards , Soy Foods/analysis , Tea/chemistry , Wine/analysis
12.
Anal Bioanal Chem ; 409(18): 4449-4458, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28547183

ABSTRACT

Acid digestion is usually required for metal determination in food samples. However, this step is usually performed in batch mode which is time consuming, labor intensive, and may lead to sample contamination. Flow digestion can overcome these limitations. In this work, the performance of a high-pressure microwave-assisted flow digestion system with a large volume reactor was evaluated for liquid samples high in sugar and fat (fruit juice and milk). The digestions were carried out in a coiled perfluoroalkoxy (PFA) tube reactor (13.5 mL) installed inside an autoclave pressurized with 40 bar nitrogen. The system was operated at 500 W microwave power and 5.0 mL min-1 carrier flow rate. Digestion conditions were optimized with phenylalanine, as this substance is known to be difficult to digest completely. The combinations of HCl or H2O2 with HNO3 increased the digestion efficiency of phenylalanine, and the residual carbon content (RCC) was around 50% when 6.0% V/V HCl or H2O2 was used in combination with 32% V/V HNO3. Juice samples were digested with 3.7 mol L-1 HNO3 and 0.3 mol L-1 HCl, and the RCC was 16 and 29% for apple and mango juices, respectively. Concentrated HNO3 (10.5 mol L-1) was successfully applied for digesting milk samples, and the RCCs were 23 and 25% for partially skimmed and whole milk, respectively. Accuracy and precision of the flow digestion procedure were compared with reference digestions using batch mode closed vessel microwave-assisted digestion and no statistically significant differences were encountered at the 95% confidence level. Graphical abstract Application of a high-pressure microwave-assisted flow digestion system for fruit juice and milk sample preparation.


Subject(s)
Chemistry Techniques, Analytical/instrumentation , Food Analysis/instrumentation , Fruit and Vegetable Juices/analysis , Milk/chemistry , Animals , Food Analysis/methods , Hydrochloric Acid , Malus , Mangifera , Microwaves , Nitric Acid , Phenylalanine/chemistry , Pressure
13.
J Agric Food Chem ; 65(23): 4839-4842, 2017 Jun 14.
Article in English | MEDLINE | ID: mdl-28545295

ABSTRACT

A microwave-induced plasma optical emission spectrometer with N2-based plasma was combined with a multimode sample introduction system (MSIS) for hydride generation (HG) and multielemental determination of As, Bi, Ge, Sb, and Sn in samples of forage, bovine liver, powdered milk, agricultural gypsum, rice, and mineral fertilizer, using a single condition of prereduction and reduction. The accuracy of the developed analytical method was evaluated using certified reference materials of water and mineral fertilizer, and recoveries ranged from 95 to 106%. Addition and recovery experiments were carried out, and the recoveries varied from 85 to 117% for all samples evaluated. The limits of detection for As, Bi, Ge, Sb, and Sn were 0.46, 0.09, 0.19, 0.46, and 5.2 µg/L, respectively, for liquid samples, and 0.18, 0.04, 0.08, 0.19, and 2.1 mg/kg, respectively, for solid samples. The method proposed offers a simple, fast, multielemental, and robust alternative for successful determination of all five analytes in agricultural samples with low operational cost without compromising analytical performance.


Subject(s)
Antimony/analysis , Arsenic/analysis , Bismuth/analysis , Crops, Agricultural/chemistry , Germanium/analysis , Milk/chemistry , Spectrum Analysis/methods , Tin/analysis , Animals , Cattle , Liver/chemistry , Microwaves
14.
Chemosphere ; 168: 1267-1276, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27823778

ABSTRACT

The purpose of the present work was to combine several tools for assessing metal pollution in marine sediments from Cienfuegos Bay. Fourteen surface sediments collected in 2013 were evaluated. Concentrations of As, Cu, Ni, Zn and V decreased respect to those previous reported. The metal contamination was spatially distributed in the north and south parts of the bay. According to the contamination factor (CF) enrichment factor (EF) and index of geoaccumulation (Igeo), Cd and Cu were classified in that order as the most contaminated elements in most sediment. Comparison of the total metal concentrations with the threshold (TELs) and probable (PELs) effect levels in sediment quality guidelines suggested a more worrisome situation for Cu, of which concentrations were occasional associated with adverse biological effects in thirteen sediments, followed by Ni in nine sediments; while adverse effects were rarely associated with Cd. Probably, Cu could be considered as the most dangerous in the whole bay because it was classified in the high contamination levels by all indexes and, simultaneously, associated to occasional adverse effects in most samples. Despite the bioavailability was partially evaluated with the HCl method, the low extraction of Ni (<3% in all samples) and Cu (<55%, except sample 3) and the relative high extraction of Cd (50% or more, except sample 14) could be considered as an attenuating (Ni and Cu) or increasing (Cd) factor in the risk assessment of those element.


Subject(s)
Arsenic/analysis , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/analysis , Bays , Biological Availability , Cuba , Environmental Monitoring/methods , Geologic Sediments/analysis , Multivariate Analysis
15.
Talanta ; 161: 826-829, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27769489

ABSTRACT

This work describes a procedure using the recently proposed standard dilution analysis (SDA) calibration method for the determination of As, Cr and Ni in concentrated HNO3 and HCl by inductively coupled plasma tandem mass spectrometry (ICP-MS/MS). Because of the low contaminant levels, and consequently low limits of detection required for these reagents (commonly used in trace element analysis and the semiconductor industry), samples were minimally diluted. The analysis of concentrated acids can result in matrix/transport effects, which may compromise accuracy in ICP-MS determinations. High-chlorine content samples are also challenging for As and Cr determination due to the formation of polyatomic species such as 40Ar35Cl+ and 35Cl16OH+, which overlap the only As isotope, 75As+, and the main Cr isotope, 52Cr+, respectively. The combination of SDA and ICP-MS/MS was evaluated to overcome matrix, transport and spectral interferences in order to increase accuracy, precision and sample throughput. The performance of SDA was compared with the traditional methods of external standard calibration (EC), internal standardization (IS), and standard additions (SA). The limits of detection for SDA were calculated as 6, 10, and 30ngL-1 for As, Cr, and Ni, respectively. Recoveries for spike experiments using the new method were in the 90-114% range for all analytes. The procedure described here provides similar or even better analytical performance in comparison with EC, IS and SA.

16.
Talanta ; 160: 354-359, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27591624

ABSTRACT

Microwave-assisted sample digestion using closed vessels is becoming the standard for trace analysis because contamination and losses can be better controlled. Gases are generated during digestion and there is an increment of the internal vessel pressure. Consequently, vessels venting may occur depending on the design of the vessel and the maximum pressure it can stand for. In the present work it was observed that it is possible to allow venting during the digestion without losing volatile analytes, such as As, when properly controlling heating and chemical conditions. Recoveries for As in certified reference materials of animal tissues ranged from 94 to 112% despite mass losses as high as 62%mm(-1) observed in the digests. However, for Hg(II) in medium containing chlorides recoveries were poor. The efficiency of digestion was measured by determination of organic carbon contents in digests and they ranged from 0.10 to 0.19% for plant and animal tissues. The temperature gradient along the vessel height is important for avoiding losses of volatile elements.

17.
Talanta ; 148: 602-8, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26653490

ABSTRACT

A novel and environment friendly analytical method is reported for total chromium determination and chromium speciation in water samples, whereby tungsten coil atomic emission spectrometry (WCAES) is combined with in situ ionic liquid formation dispersive liquid-liquid microextraction (in situ IL-DLLME). A two stage multivariate optimization approach has been developed employing a Plackett-Burman design for screening and selection of the significant factor involved in the in situ IL-DLLME procedure, which was later optimized by means of a circumscribed central composite design. The optimum conditions were complexant concentration: 0.5% (or 0.1%); complexant type: DDTC; IL anion: PF6(-); [Hmim][Cl] IL amount: 60 mg; ionic strength: 0% NaCl; pH: 5 (or 2); centrifugation time: 10 min; and centrifugation speed: 1000 rpm. Under the optimized experimental conditions the method was evaluated and proper linearity was obtained with a correlation coefficient of 0.991 (5 calibration standards). Limits of detection and quantification for both chromium species were 3 and 10 µg L(-1), respectively. This is a 233-fold improvement when compared with chromium determination by WCAES without using preconcentration. The repeatability of the proposed method was evaluated at two different spiking levels (10 and 50 µg L(-1)) obtaining coefficients of variation of 11.4% and 3.6% (n=3), respectively. A certified reference material (SRM-1643e NIST) was analyzed in order to determine the accuracy of the method for total chromium determination and 112.3% and 2.5 µg L(-1) were the recovery (trueness) and standard deviation values, respectively. Tap, bottled mineral and natural mineral water samples were analyzed at 60 µg L(-1) spiking level of total Cr content at two Cr(VI)/Cr(III) ratios, and relative recovery values ranged between 88% and 112% showing that the matrix has a negligible effect. To our knowledge, this is the first time that combines in situ IL-DLLME and WCAES.

18.
Food Chem ; 175: 212-7, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25577072

ABSTRACT

A new method for the decomposition of soybean based edible products (soy extract, textured soy protein, transgenic soybeans, and whole soy flour) was developed to essential (Co, Cr, Cu, Fe, Mn, Ni, Se, V, and Zn) and non-essential (As, Ba, Cd, Pb, and Sr) trace elements determination by ICP OES and ICP-MS respectively. Effects related to the concentration of HNO3 (2.1-14.5 mol L(-1)) and the use of hydrogen peroxide on the efficiency of decomposition was evaluated based on the residual carbon content (RCC). It was demonstrated that 2.1 mol L(-1) HNO3 plus 1.0 mL H2O2 was suitable for an efficient digestion, since RCC was lower than 18% and the agreement with certified values and spike recoveries were higher than 90% for all analytes. The concentrations of analytes in the samples (minimum-maximum in mgkg(-1)) were: The concentrations of analytes in the samples (minimum-maximum in mgkg(-1)) were: As (<0.007-0.040), Ba (0.064-10.6), Cd (<0.006-0.028), Co (0.012-102), Cr (0.56-5.88), Cu (6.53-13.9), Fe (24.9-126), Mn (16.4-35.2), Ni (0.74-4.78), Se (<2.90-25), Sr (2.48-20.1), Pb (<0.029-0.11), V (<0.027-20), and Zn (30.1-47.3). Soy-based foods investigated in this study presented variable composition in terms of essential and potentially toxic elements, which can be attributed to different methods of processing.


Subject(s)
Food Analysis/methods , Hydrogen Peroxide , Microwaves , Nitric Acid , Soy Foods/analysis , Trace Elements/analysis , Carbon/analysis , Limit of Detection , Seeds , Glycine max , Spectrum Analysis
19.
Anal Chim Acta ; 837: 16-22, 2014 Jul 21.
Article in English | MEDLINE | ID: mdl-25000853

ABSTRACT

The present work evaluates the influence of vessel cooling simultaneously to microwave-assisted digestion performed in a closed system with diluted HNO3 under O2 pressure. The effect of outside air flow-rates (60-190 m(3) h(-1)) used for cooling of digestion vessels was evaluated. An improvement in digestion efficiency caused by the reduction of HNO3 partial pressure was observed when using higher air flow-rate (190 m(3) h(-1)), decreasing the residual carbon content for whole milk powder from 21.7 to 9.3% (lowest and highest air flow-rate, respectively). The use of high air flow-rate outside the digestion vessel resulted in a higher temperature gradient between liquid and gas phases inside the digestion vessel and improved the efficiency of sample digestion. Since a more pronounced temperature gradient was obtained, it contributed for increasing the condensation rate and thus allowed a reduction in the HNO3 partial pressure of the digestion vessel, which improved the regeneration of HNO3. An air flow-rate of 190 m(3) h(-1) was selected for digestion of animal fat, bovine liver, ground soybean, non fat milk powder, oregano leaves, potato starch and whole milk powder samples, and a standard reference material of apple leaves (NIST 1515), bovine liver (NIST 1577) and whole milk powder (NIST 8435) for further metals determination by inductively coupled plasma atomic emission spectroscopy (ICP-OES). Results were in agreement with certified values and no interferences caused by matrix effects during the determination step were observed.


Subject(s)
Chemistry Techniques, Analytical/methods , Microwaves , Nitric Acid/chemistry , Oxygen/chemistry , Temperature , Adipose Tissue , Animals , Cattle , Dairy Products , Food Analysis , Liver , Malus , Origanum , Plant Leaves , Solanum tuberosum , Glycine max , Starch
20.
Anal Chim Acta ; 831: 24-30, 2014 Jun 11.
Article in English | MEDLINE | ID: mdl-24861968

ABSTRACT

Bismuth was evaluated as internal standard for Pb determination by line source flame atomic absorption spectrometry (LS FAAS), high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS) and line source graphite furnace atomic absorption spectrometry (LS GFAAS). Analysis of samples containing different matrices indicated close relationship between Pb and Bi absorbances. Correlation coefficients of calibration curves built up by plotting A(Pb)/A(Bi)versus Pb concentration were higher than 0.9953 (FAAS) and higher than 0.9993 (GFAAS). Recoveries of Pb improved from 52-118% (without IS) to 97-109% (IS, LS FAAS); 74-231% (without IS) to 96-109% (IS, HR-CS FAAS); and 36-125% (without IS) to 96-110% (IS, LS GFAAS). The relative standard deviations (n=12) were reduced from 0.6-9.2% (without IS) to 0.3-4.3% (IS, LS FAAS); 0.7-7.7% (without IS) to 0.1-4.0% (IS, HR-CS FAAS); and 2.1-13% (without IS) to 0.4-5.9% (IS, LS GFAAS).

SELECTION OF CITATIONS
SEARCH DETAIL
...