Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Eur J Cell Biol ; 102(2): 151317, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37099936

ABSTRACT

Avulsion injury results in motoneuron death due to the increased excitotoxicity developing in the affected spinal segments. This study focused on possible short and long term molecular and receptor expression alterations which are thought to be linked to the excitotoxic events in the ventral horn with or without the anti-excitotoxic riluzole treatment. In our experimental model the left lumbar 4 and 5 (L4, 5) ventral roots of the spinal cord were avulsed. Treated animals received riluzole for 2 weeks. Riluzole is a compound that acts to block voltage-activated Na+ and Ca2+ channels. In control animals the L4, 5 ventral roots were avulsed without riluzole treatment. Expression of astrocytic EAAT-2 and that of KCC2 in motoneurons on the affected side of the L4 spinal segment were detected after the injury by confocal and dSTORM imaging, intracellular Ca2+ levels in motoneurons were quantified by electron microscopy. The KCC2 labeling in the lateral and ventrolateral parts of the L4 ventral horn was weaker compared with the medial part of L4 ventral horn in both groups. Riluzole treatment dramatically enhanced motoneuron survival but was not able to prevent the down-regulation of KCC2 expression in injured motoneurons. In contrast, riluzole successfully obviated the increase of intracellular calcium level and the decrease of EAAT-2 expression in astrocytes compared with untreated injured animals. We conclude that KCC2 may not be an essential component for survival of injured motoneurons and riluzole is able to modulate the intracellular level of calcium and expression of EAAT-2.


Subject(s)
Riluzole , Symporters , Animals , Riluzole/pharmacology , Riluzole/metabolism , Calcium/metabolism , Spinal Nerve Roots/injuries , Spinal Nerve Roots/metabolism , Spinal Cord/metabolism , Symporters/genetics , Symporters/metabolism
2.
Research (Wash D C) ; 6: 0056, 2023.
Article in English | MEDLINE | ID: mdl-36930811

ABSTRACT

Efficient in vivo delivery of anti-inflammatory proteins to modulate the microenvironment of an injured spinal cord and promote neuroprotection and functional recovery is a great challenge. Nucleoside-modified messenger RNA (mRNA) has become a promising new modality that can be utilized for the safe and efficient delivery of therapeutic proteins. Here, we used lipid nanoparticle (LNP)-encapsulated human interleukin-10 (hIL-10)-encoding nucleoside-modified mRNA to induce neuroprotection and functional recovery following rat spinal cord contusion injury. Intralesional administration of hIL-10 mRNA-LNP to rats led to a remarkable reduction of the microglia/macrophage reaction in the injured spinal segment and induced significant functional recovery compared to controls. Furthermore, hIL-10 mRNA treatment induced increased expression in tissue inhibitor of matrix metalloproteinase 1 and ciliary neurotrophic factor levels in the affected spinal segment indicating a time-delayed secondary effect of IL-10 5 d after injection. Our results suggest that treatment with nucleoside-modified mRNAs encoding neuroprotective factors is an effective strategy for spinal cord injury repair.

3.
Biomolecules ; 12(8)2022 07 22.
Article in English | MEDLINE | ID: mdl-35892326

ABSTRACT

Mature neurotrophic factors and their propeptides play key roles ranging from the regulation of neuronal growth and differentiation to prominent participation in neuronal survival and recovery after injury. Their signaling pathways sculpture neuronal circuits during brain development and regulate adaptive neuroplasticity. In addition, neurotrophic factors provide trophic support for damaged neurons, giving them a greater capacity to survive and maintain their potential to regenerate their axons. Therefore, the modulation of these factors can be a valuable target for treating or preventing neurologic disorders and age-dependent cognitive decline. Neuroregenerative medicine can take great advantage by the deepening of our knowledge on the molecular mechanisms underlying the properties of neurotrophic factors. It is indeed an intriguing topic that a significant interplay between neurotrophic factors and various metals can modulate the outcome of neuronal recovery. This review is particularly focused on the roles of GDNF, BDNF and NGF in motoneuron survival and recovery from injuries and evaluates the therapeutic potential of various neurotrophic factors in neuronal regeneration. The key role of metal homeostasis/dyshomeostasis and metal interaction with neurotrophic factors on neuronal pathophysiology is also highlighted as a novel mechanism and potential target for neuronal recovery. The progress in mechanistic studies in the field of neurotrophic factor-mediated neuroprotection and neural regeneration, aiming at a complete understanding of integrated pathways, offers possibilities for the development of novel neuroregenerative therapeutic approaches.


Subject(s)
Brain-Derived Neurotrophic Factor , Glial Cell Line-Derived Neurotrophic Factor , Brain-Derived Neurotrophic Factor/metabolism , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Motor Neurons/metabolism , Nerve Growth Factor/metabolism , Nerve Regeneration
4.
J Neuroinflammation ; 19(1): 68, 2022 Mar 19.
Article in English | MEDLINE | ID: mdl-35305649

ABSTRACT

BACKGROUND: Peripheral nerve injuries are accompanied by inflammatory reactions, over-activation of which may hinder recovery. Among pro-inflammatory pathways, inflammasomes are one of the most potent, leading to release of active IL-1ß. Our aim was to understand how inflammasomes participate in central inflammatory reactions accompanying peripheral nerve injury. METHODS: After axotomy of the sciatic nerve, priming and activation of the NLRP3 inflammasome was examined in cells of the spinal cord. Regeneration of the nerve was evaluated after coaptation using sciatic functional index measurements and retrograde tracing. RESULTS: In the first 3 days after the injury, elements of the NLRP3 inflammasome were markedly upregulated in the L4-L5 segments of the spinal cord, followed by assembly of the inflammasome and secretion of active IL-1ß. Although glial cells are traditionally viewed as initiators of neuroinflammation, in this acute phase of inflammation, inflammasome activation was found exclusively in affected motoneurons of the ventral horn in our model. This process was significantly inhibited by 5-BDBD, a P2X4 receptor inhibitor and MCC950, a potent NLRP3 inhibitor. Although at later time points the NLRP3 protein was upregulated in microglia too, no signs of inflammasome activation were detected in these cells. Inhibition of inflammasome activation in motoneurons in the first days after nerve injury hindered development of microgliosis in the spinal cord. Moreover, P2X4 or inflammasome inhibition in the acute phase significantly enhanced nerve regeneration on both the morphological and the functional levels. CONCLUSIONS: Our results indicate that the central reaction initiated by sciatic nerve injury starts with inflammasome activation in motoneurons of the ventral horn, which triggers a complex inflammatory reaction and activation of microglia. Inhibition of neuronal inflammasome activation not only leads to a significant reduction of microgliosis, but has a beneficial effect on the recovery as well.


Subject(s)
Inflammasomes , Peripheral Nerve Injuries , Humans , Inflammasomes/metabolism , Motor Neurons/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neuroinflammatory Diseases , Sciatic Nerve/injuries
5.
J Neurosci Methods ; 365: 109398, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34728254

ABSTRACT

BACKGROUND: Spinal cord injuries induce a critical loss of motoneurons followed by irreversible locomotor function impairment. Surgical approaches combined with neuroprotective agents effectively rescue the damaged motoneurons and improve locomotor function. Our aim was to develop a reliable method which is able to provide quantifiable and in-depth data on the locomotor recovery during skeletal muscle reinnervation. NEW METHOD: Sprague-Dawley rats underwent lumbar 4 ventral root avulsion and reimplantation followed by riluzole treatment in order to rescue the injured motoneurons of the damaged pool. Control animals were operated, but received no riluzole treatment. The locomotor pattern of the hind limb was recorded biweekly on a special runway equipped with high resolution and high speed digital cameras producing both lateral and rear views simultaneously. All together 12 parameters of the hind limb movement pattern were evaluated by measuring specific joint angles, footprints and gait parameters in single video frames. Four months after the operation Fast Blue, a fluorescent retrograde tracer was applied to the L4 spinal nerve in order to label the reinnervating motoneurons. RESULTS: Our results confirmed the sensitivity of our arrangement and established strong relationship between the functional improvement and the morphological reinnervation. Moreover, we developed a correction method to make the system tolerant to the differences in the weight, step duration and step length. COMPARISON WITH EXISTING METHODS: There are no commercially available cheap, multi-parametric analysing equipment to characterise the gait in its complexity. CONCLUSIONS: Our system offers a modular, adaptable and expandable analysis on the reinnervation of the limb musculature in rodents.


Subject(s)
Motor Neurons , Nerve Regeneration , Animals , Motor Neurons/physiology , Muscle, Skeletal/innervation , Nerve Regeneration/physiology , Rats , Rats, Sprague-Dawley , Spinal Nerve Roots/physiology
6.
Cells ; 10(11)2021 11 18.
Article in English | MEDLINE | ID: mdl-34831436

ABSTRACT

Hundreds of thousands of people suffer spinal cord injuries each year. The experimental application of stem cells following spinal cord injury has opened a new era to promote neuroprotection and neuroregeneration of damaged tissue. Currently, there is great interest in the intravenous administration of the secretome produced by mesenchymal stem cells in acute or subacute spinal cord injuries. However, it is important to highlight that undifferentiated neural stem cells and induced pluripotent stem cells are able to adapt to the damaged environment and produce the so-called lesion-induced secretome. This review article focuses on current research related to the secretome and the lesion-induced secretome and their roles in modulating spinal cord injury symptoms and functional recovery, emphasizing different compositions of the lesion-induced secretome in various models of spinal cord injury.


Subject(s)
Secretome/metabolism , Spinal Cord Regeneration/physiology , Stem Cells/metabolism , Animals , Humans , Immunomodulation , Spinal Cord Injuries/epidemiology , Spinal Cord Injuries/immunology , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/therapy , Stem Cell Transplantation
7.
Sci Rep ; 10(1): 22414, 2020 12 29.
Article in English | MEDLINE | ID: mdl-33376249

ABSTRACT

Spinal cord injury results in irreversible tissue damage followed by a very limited recovery of function. In this study we investigated whether transplantation of undifferentiated human induced pluripotent stem cells (hiPSCs) into the injured rat spinal cord is able to induce morphological and functional improvement. hiPSCs were grafted intraspinally or intravenously one week after a thoracic (T11) spinal cord contusion injury performed in Fischer 344 rats. Grafted animals showed significantly better functional recovery than the control rats which received only contusion injury. Morphologically, the contusion cavity was significantly smaller, and the amount of spared tissue was significantly greater in grafted animals than in controls. Retrograde tracing studies showed a statistically significant increase in the number of FB-labeled neurons in different segments of the spinal cord, the brainstem and the sensorimotor cortex. The extent of functional improvement was inversely related to the amount of chondroitin-sulphate around the cavity and the astrocytic and microglial reactions in the injured segment. The grafts produced GDNF, IL-10 and MIP1-alpha for at least one week. These data suggest that grafted undifferentiated hiPSCs are able to induce morphological and functional recovery after spinal cord contusion injury.


Subject(s)
Induced Pluripotent Stem Cells/metabolism , Spinal Cord Injuries , Stem Cell Niche , Stem Cell Transplantation , Animals , Chemokine CCL3/metabolism , Disease Models, Animal , Female , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Heterografts , Humans , Induced Pluripotent Stem Cells/pathology , Induced Pluripotent Stem Cells/transplantation , Interleukin-10/metabolism , Rats , Rats, Inbred F344 , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Spinal Cord Injuries/therapy
9.
Photochem Photobiol ; 96(4): 826-833, 2020 07.
Article in English | MEDLINE | ID: mdl-31858606

ABSTRACT

The purpose of the present study was to determine the age dependence of the ultraviolet (UV) absorption of the different parts of the human crystalline lens. Cryostat sections of human cadaveric lenses (60 µm) were cut. The UV absorbance of nine samples, derived from different parts of the lens, was determined using a Shimadzu scanning spectrophotometer. The absorbance of the anterior and posterior lens capsules was measured separately. The absorption coefficients were calculated from the measured absorbance and values taken at 280 as well as at 360 nm were compared statistically. ANCOVA analysis of the values taken at 280 and at 360 nm wavelengths shows that correlation between the absorption coefficients and age can be found only in the case of the posterior layers. These results suggest a differential age-dependent increase of the UV absorption of the posterior layers compared to the anterior ones and can be related to the differential protein expression in the anterior and posterior parts. Posterior crystalline lens capsules have higher absorption coefficients than the anterior ones regardless of age.


Subject(s)
Age Factors , Lens, Crystalline/radiation effects , Ultraviolet Rays , Adolescent , Adult , Aged , Child , Humans , Middle Aged , Spectrophotometry, Ultraviolet , Young Adult
10.
J Neurotrauma ; 36(21): 2977-2990, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31111776

ABSTRACT

Spinal cord contusion injury leads to severe loss of gray and white matter and subsequent deficit of motor and sensory functions below the lesion. In this study, we investigated whether application of murine clonal embryonic neuroectodermal stem cells can prevent the spinal cord secondary damage and induce functional recovery. Stem cells (NE-GFP-4C cell line) were grafted intraspinally or intravenously immediately or one week after thoracic spinal cord contusion injury. Control animals received cell culture medium or fibrin intraspinally one week after injury. Functional tests (Basso, Beattie, Bresnahan, CatWalk®) and detailed morphological analysis were performed to evaluate the effects of grafted cells. Stem cells applied either locally or intravenously induced significantly improved functional recovery compared with their controls. Morphologically, stem cell grafting prevented the formation of secondary injury and promoted sparing of the gray and white matters. The transplanted cells integrated into the host tissue and differentiated into neurons, astrocytes, and oligodendrocytes. In intraspinally grafted animals, the corticospinal tract axons regenerated along the ventral border of the cavity and have grown several millimeters, even beyond the caudal end of the lesion. The extent of regeneration and functional improvement was inversely related to the amounts of chondroitin sulphate and ephrin-B2 molecules around the cavity and to the microglial and astrocytic reactions in the injured segment early after injury. The grafts produced glial cell derived neurotrophic factor, macrophage inflammatory protein-1a, interleukin (IL)-6 and IL-10 in a paracrine fashion for at least one week. Treating the grafted cords with neutralizing antibodies against these four factors through the use of osmotic pumps nearly completely abolished the effect of the graft. The non-significant functional improvement after function blocking is likely because the stem cell derivatives settled in the injured cord. These data suggest that grafted neuroectodermal stem cells are able to prevent the secondary spinal cord damage and induce significant regeneration via multiple mechanisms.


Subject(s)
Embryonic Stem Cells/transplantation , Nerve Regeneration/physiology , Neural Stem Cells/transplantation , Spinal Cord Injuries/pathology , Stem Cell Transplantation/methods , Animals , Axons/pathology , Female , Mice , Rats , Rats, Sprague-Dawley , Recovery of Function/physiology
11.
Front Cell Neurosci ; 13: 182, 2019.
Article in English | MEDLINE | ID: mdl-31139050

ABSTRACT

To improve the outcome after autologous nerve grafting in the clinic, it is important to understand the limiting variables such as distinct phenotypes of motor and sensory Schwann cells. This study investigated the properties of phenotypically different autografts in a 6 mm femoral nerve defect model in the rat, where the respective femoral branches distally of the inguinal bifurcation served as homotopic, or heterotopic autografts. Axonal regeneration and target reinnervation was analyzed by gait analysis, electrophysiology, and wet muscle mass analysis. We evaluated regeneration-associated gene expression between 5 days and 10 weeks after repair, in the autografts as well as the proximal, and distal segments of the femoral nerve using qRT-PCR. Furthermore we investigated expression patterns of phenotypically pure ventral and dorsal roots. We identified highly significant differences in gene expression of a variety of regeneration-associated genes along the central - peripheral axis in healthy femoral nerves. Phenotypically mismatched grafting resulted in altered spatiotemporal expression of neurotrophic factor BDNF, GDNF receptor GFRα1, cell adhesion molecules Cadm3, Cadm4, L1CAM, and proliferation associated Ki67. Although significantly higher quadriceps muscle mass following homotopic nerve grafting was measured, we did not observe differences in gait analysis, and electrophysiological parameters between treatment paradigms. Our study provides evidence for phenotypic commitment of autologous nerve grafts after injury and gives a conclusive overview of temporal expression of several important regeneration-associated genes after repair with sensory or motor graft.

12.
J Neurosci ; 38(35): 7683-7700, 2018 08 29.
Article in English | MEDLINE | ID: mdl-30054395

ABSTRACT

Aging contributes to cellular stress and neurodegeneration. Our understanding is limited regarding the tissue-restricted mechanisms providing protection in postmitotic cells throughout life. Here, we show that spinal cord motoneurons exhibit a high abundance of asymmetric dimethyl arginines (ADMAs) and the presence of this posttranslational modification provides protection against environmental stress. We identify protein arginine methyltransferase 8 (PRMT8) as a tissue-restricted enzyme responsible for proper ADMA level in postmitotic neurons. Male PRMT8 knock-out mice display decreased muscle strength with aging due to premature destabilization of neuromuscular junctions. Mechanistically, inhibition of methyltransferase activity or loss of PRMT8 results in accumulation of unrepaired DNA double-stranded breaks and decrease in the cAMP response-element-binding protein 1 (CREB1) level. As a consequence, the expression of CREB1-mediated prosurvival and regeneration-associated immediate early genes is dysregulated in aging PRMT8 knock-out mice. The uncovered role of PRMT8 represents a novel mechanism of stress tolerance in long-lived postmitotic neurons and identifies PRMT8 as a tissue-specific therapeutic target in the prevention of motoneuron degeneration.SIGNIFICANCE STATEMENT Although most of the cells in our body have a very short lifespan, postmitotic neurons must survive for many decades. Longevity of a cell within the organism depends on its ability to properly regulate signaling pathways that counteract perturbations, such as DNA damage, oxidative stress, or protein misfolding. Here, we provide evidence that tissue-specific regulators of stress tolerance exist in postmitotic neurons. Specifically, we identify protein arginine methyltransferase 8 (PRMT8) as a cell-type-restricted arginine methyltransferase in spinal cord motoneurons (MNs). PRMT8-dependent arginine methylation is required for neuroprotection against age-related increased of cellular stress. Tissue-restricted expression and the enzymatic activity of PRMT8 make it an attractive target for drug development to delay the onset of neurodegenerative disorders.


Subject(s)
DNA Damage/physiology , Motor Neurons/enzymology , Protein-Arginine N-Methyltransferases/physiology , Aging/metabolism , Amino Acid Sequence , Animals , Arginine/analogs & derivatives , Arginine/metabolism , Cell Line , Cyclic AMP Response Element-Binding Protein/physiology , DNA Breaks, Double-Stranded , DNA Repair , Isometric Contraction , Male , Mice , Mice, Knockout , Mice, Transgenic , Muscle Cells/enzymology , Muscle Cells/physiology , Neuromuscular Junction/metabolism , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Protein-Arginine N-Methyltransferases/deficiency , Protein-Arginine N-Methyltransferases/genetics , RNA Interference , RNA, Small Interfering/pharmacology , Recombinant Fusion Proteins/metabolism , Reflex, Abnormal , Rotarod Performance Test , Spinal Cord/cytology , Spinal Cord/growth & development
13.
J Orthop Surg Res ; 12(1): 181, 2017 Nov 22.
Article in English | MEDLINE | ID: mdl-29166912

ABSTRACT

BACKGROUND: The postoperative course after arthroscopic superior labrum anterior to posterior (SLAP) repair using suture anchors is accompanied by a prolonged period of pain, which might be caused by constriction of nerve fibres. The purpose was to histologically investigate the distribution of neurofilament in the superior labrum and the long head of the biceps tendon (LHBT), i.e. the location of type II SLAP lesions. METHODS: Ten LHBTs including the superior labrum were dissected from fresh human specimen and immunohistochemically stained against neurofilament (NF). All slides were scanned at high resolution and converted into tagged image file format, and regions of interest (ROIs) were defined as follows: ROI I-superior labrum anterior to the LHBT origin, ROI II-mid-portion of the superior labrum at the origin of the LHBT, ROI III-superior labrum posterior to the LHBT origin and ROI IV-the most proximal part of the LHBT before its attachment to the superior labrum. The entire images were automatically segmented according to the defined ROIs and measured using a programmed algorithm specifically created for this purpose. The NF-positive cells were counted, and their total size and the area of other tissue were measured separately for the different ROIs. RESULTS: Distribution of NF-positive cells in absolute numbers revealed a clear but insignificantly higher amount in favour of ROI I, representing the superior labrum anterior to the LHBT origin. Setting ROI I at 100%, a significant difference could be seen compared to ROI III, representing the superior labrum posterior to the LHBT origin (ROI I vs. ROI III with a p value < 0.05). CONCLUSIONS: Summarizing, the density of neurofilament is inhomogeneously distributed throughout the superior labrum with the highest number of neurofilament in the anterior superior labrum. Thus, suture placement in type II SLAP repair could play an important role for the postoperative pain-related outcome.


Subject(s)
Shoulder Joint/innervation , Tendons/innervation , Aged , Female , Humans , Male , Middle Aged , Shoulder Injuries/surgery
14.
J Neurotrauma ; 34(15): 2364-2374, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28657487

ABSTRACT

Ventral root avulsion induces dramatic loss of the affected spinal cord motoneurons. The neuroprotective effect of riluzole has been previously proven on the injured motoneurons: the vast majority of them can be rescued even when they have no possibility to regenerate their axons. In this study the number of injured motoneurons rescued by riluzole treatment and their capacity to reinnervate the denervated forelimb muscles was investigated. Surgical reconnection with a peripheral nerve graft between the affected spinal cord segment and the C7 spinal nerve was established immediately or with 1- and 3-week delay after avulsion. Avulsion and immediate reconnection of the motoneuron pool to the spinal nerve resulted in moderate reinnervation of the spinal nerve (281 ± 23 standard error of mean [SEM] retrogradely labeled motoneurons), whereas treatment of the injured motoneurons with riluzole yielded considerably higher numbers of reinnervating motoneurons (548 ± 18 SEM). Reconnection of the motor pool with the C7 spinal nerve with 1-week delay allowed fewer motor axons to reinnervate their targets in control and riluzole-treated animals (159 ± 21 vs. 395 ± 16 SEM). A clinically relevant 3-week delay in reconnection further reduced the number of reinnervating motoneurons (76 ± 22 SEM), but riluzole pre-treatment still enabled a significant number of rescued motoneurons (396 ± 17 SEM) to regenerate their axons into the C7 spinal nerve. These results show that those injured adult motoneurons that are rescued by riluzole treatment started immediately after the avulsion injury are able to reinnervate their targets even if they are provided with a conduit several weeks after the primary injury. This finding suggests that partial rescue of injured motoneurons with riluzole in patients who suffered a brachial plexus avulsion injury may provide an available pool of surviving motoneurons for late reconnection/reimplantation surgeries.


Subject(s)
Motor Neurons/drug effects , Nerve Regeneration/drug effects , Neuroprotective Agents/pharmacology , Riluzole/pharmacology , Animals , Brachial Plexus/drug effects , Cervical Vertebrae , Female , Radiculopathy/pathology , Rats , Rats, Sprague-Dawley , Spinal Cord/drug effects
15.
Naunyn Schmiedebergs Arch Pharmacol ; 389(9): 1009-20, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27342418

ABSTRACT

Besides their deleterious action on cardiac muscle, anthracycline-type cytostatic agents exert significant neurotoxic effects on primary sensory neurons. Since cardiac sensory nerves confer protective effects on heart muscle and share common traits with cutaneous chemosensitive nerves, this study examined the effects of cardiotoxic doses of adriamycin on the function and morphology of epidermal nerves. Sensory neurogenic vasodilatation, plasma extravasation, and the neural CGRP release evoked by TRPV1 and TRPA1 agonists in vitro were examined by using laser Doppler flowmetry, the Evans blue technique, and ELISA, respectively. Carrageenan-induced hyperalgesia was assessed with the Hargreaves method. Immunohistochemistry was utilized to study cutaneous innervation. Adriamycin treatment resulted in profound reductions in the cutaneous neurogenic sensory vasodilatation and plasma extravasation evoked by the TRPV1 and TRPA1 agonists capsaicin and mustard oil, respectively. The in vitro capsaicin-, but not high potassium-evoked neural release of the major sensory neuropeptide, CGRP, was markedly attenuated after adriamycin treatment. Carrageenan-induced inflammatory hyperalgesia was largely abolished following the administration of adriamycin. Immunohistochemistry revealed a substantial loss of epidermal TRPV1-expressing nociceptive nerves and a marked thinning of the epidermis. These findings indicate impairments in the functions of TRPV1 and TRPA1 receptors expressed on cutaneous chemosensitive nociceptive nerves and the loss of epidermal axons following the administration of cardiotoxic doses of adriamycin. Monitoring of the cutaneous nociceptor function in the course of adriamycin therapy may well be of predictive value for early detection of the deterioration of cardiac nerves which confer protection against the deleterious effects of the drug.


Subject(s)
Antibiotics, Antineoplastic/toxicity , Doxorubicin/toxicity , Hyperalgesia/prevention & control , Nociception/drug effects , Sensory Receptor Cells/drug effects , Skin/innervation , Animals , Biomarkers/metabolism , Calcitonin Gene-Related Peptide/metabolism , Capillary Permeability/drug effects , Capsaicin/pharmacology , Cardiotoxicity , Carrageenan , Disease Models, Animal , Hyperalgesia/chemically induced , Hyperalgesia/metabolism , Hyperalgesia/physiopathology , Male , Motor Activity/drug effects , Mustard Plant , Plant Oils/pharmacology , Rats, Wistar , Regional Blood Flow/drug effects , Sensory Receptor Cells/metabolism , Skin/blood supply , TRPA1 Cation Channel , TRPC Cation Channels/agonists , TRPC Cation Channels/metabolism , TRPV Cation Channels/agonists , TRPV Cation Channels/metabolism , Time Factors , Vasodilation/drug effects
16.
Exp Neurol ; 269: 188-201, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25889458

ABSTRACT

Human plexus injuries often include the avulsion of one or more ventral roots, resulting in debilitating conditions. In this study the effects of undifferentiated murine iPSCs on damaged motoneurons were investigated following avulsion of the lumbar 4 (L4) ventral root, an injury known to induce the death of the majority of the affected motoneurons. Avulsion and reimplantation of the L4 ventral root (AR procedure) were accompanied by the transplantation of murine iPSCs into the injured spinal cord segment in rats. Control animals underwent ventral root avulsion and reimplantation, but did not receive iPSCs. The grafted iPSCs induced an improved reinnervation of the reimplanted ventral root by the host motoneurons as compared with the controls (number of retrogradely labeled motoneurons: 503 ± 38 [AR+iPSCs group] vs 48 ± 6 [controls, AR group]). Morphological reinnervation resulted in a functional recovery, i.e. the grafted animals exhibited more motor units in their reinnervated hind limb muscles, which produced a greater force than that in the controls (50 ± 2.1% vs 11.9 ± 4.2% maximal tetanic tension [% ratio of operated/intact side]). Grafting of undifferentiated iPSCs downregulated the astroglial activation within the L4 segment. The grafted cells differentiated into neurons and astrocytes in the injured cord. The grafted iPSCs, host neurons and glia were found to produce the cytokines and neurotrophic factors MIP-1a, IL-10, GDNF and NT-4. These findings suggest that, following ventral root avulsion injury, iPSCs are able to induce motoneuron survival and regeneration through combined neurotrophic and cytokine modulatory effects.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Motor Neurons/cytology , Nerve Regeneration/physiology , Spinal Nerve Roots/injuries , Animals , Cell Death , Cell Survival/physiology , Cell- and Tissue-Based Therapy/methods , Mice , Nerve Growth Factors/metabolism , Rats , Recovery of Function/physiology , Spinal Cord/cytology
17.
Tissue Eng Part C Methods ; 21(9): 945-57, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25819471

ABSTRACT

Over the past decade, silk fibroin (SF) has been emergently used in peripheral nerve tissue engineering. Current approaches aiming at producing SF-based nerve guidance conduits (SF-NGCs) used dissolved silk based on either aqueous solutions or organic solvents. In this study, we describe a novel procedure to produce SF-NGCs: A braided tubular structure of raw Bombyx mori silk is subsequently processed with the ternary solvent CaCl2/H2O/ethanol, formic acid, and methanol to improve its mechanical and topographical characteristics. Topographically, the combination of the treatments results in a fusion of the outer single silk fibers to a closed layer with a thickness ranging from about 40 to 75 µm. In contrast to the outer wall, the inner lumen (not treated with processing solvents) still represents the braided structure of single fibers. Mechanical stability, elasticity, and kink characteristics were evaluated with a custom-made test system. The modification procedure described here drastically improved the elastic properties of our tubular raw scaffold, favoring its use as a NGC. A cell migration assay with NIH/3T3-fibroblasts revealed the impermeability of the SF-NGC wall for possible invading and scar-forming cells. Moreover, the potential of the SF-NGC to serve as a substratum for Schwann cells has been demonstrated by cytotoxicity tests and live-dead stainings of Schwann cells grown on the inner surface of the SF-NGC. In vivo, the SF-NGC was tested in a rat sciatic nerve injury model. In short-term in vivo studies, it was proved that SF-NGCs are not triggering host inflammatory reactions. After 12 weeks, we could demonstrate morphological and functional reinnervation of the distal targets. Filled with collagen, a higher number of axons could be found in the distal to the graft (1678±303), compared with the empty SF-NGC (1274±146). The novel SF-NGC presented here shows promising results for the treatment of peripheral nerve injuries. The modification of braided structures to adapt their mechanical and topographical characteristics may support the translation of SF-based scaffolds into the clinical setting. However, further improvements and the use of extracellular matrix molecules and Schwann cells are suggested to enable silk tube based conduits to bridge long-distance nerve gaps.


Subject(s)
Fibroins/pharmacology , Guided Tissue Regeneration/methods , Sciatic Nerve/pathology , Animals , Anisotropy , Axons/drug effects , Bombyx , Cell Death/drug effects , Cell Membrane Permeability/drug effects , Cell Survival/drug effects , Disease Models, Animal , Electrophysiological Phenomena/drug effects , Locomotion/drug effects , Mice , Myelin Sheath/metabolism , NIH 3T3 Cells , Rats , Recovery of Function/drug effects , Regeneration/drug effects , Sciatic Nerve/drug effects
18.
J Neuroimaging ; 25(4): 582-9, 2015.
Article in English | MEDLINE | ID: mdl-25510176

ABSTRACT

BACKGROUND AND PURPOSE: To evaluate the short-term outcome of erythropoietin (EPO) therapy in rats with spinal cord injury (SCI) using manganese-enhanced magnetic resonance imaging (MEMRI). METHODS: Rats were divided in an EPO and a control group. Laminectomy at Th11 was performed, followed by SCI. MnCl2 was applied into the cisterna magna and functional recovery was examined after injury using BBB-scoring. Then, rats were euthanized and the spinal cord was extracted for MEMRI. Finally, histological analysis was performed and correlated with MEMRI. RESULTS: EPO-treated animals showed significantly better functional recovery (P = .008, r = .62) and higher mean signal-to-noise ratio (SNR) in MEMRI compared to controls for slices 10-13 (P = .017, R(2) = .31) at the level of the lesion epicenter. Functional recovery correlated significantly with higher SNR values, determined using the mean SNR between slices 10 and 13 (P = .047, R(2) = .36). In this region, histology revealed a significantly decreased number of microglia cells and apoptosis in EPO-treated animals. CONCLUSION: MEMRI successfully depicts the therapeutic effect of EPO in early SCI that leads to a significant recovery in rats, a significantly reduced immune response and significantly reduced number of apoptotic cells at the height of the lesion epicenter.


Subject(s)
Chlorides , Drug Monitoring/methods , Erythropoietin/therapeutic use , Magnetic Resonance Imaging/methods , Manganese Compounds , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/pathology , Acute Disease , Animals , Contrast Media , Image Enhancement/methods , Male , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Sensitivity and Specificity , Treatment Outcome
19.
Exp Neurol ; 261: 180-9, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24907401

ABSTRACT

Following an injury to their axons close to the cell body, adult motoneurons generally die. This type of injury, typically caused by avulsion of the spinal ventral root, initiates the activation of astrocytes and microglial cells and the extracellular space becomes loaded with excessive amounts of excitotoxic glutamate. We have provided evidence that, following ventral root avulsion and reimplantation, murine embryonic neuroectodermal stem cells (NE-GFP-4C) grafted into the rat spinal cord rescue the vast majority of the motoneurons that would otherwise die, and enable them to reinnervate peripheral targets. Stem cell grafts produced the modulatory cytokines IL-1-alpha, IL-6, IL-10, TNF-alpha and MIP-1-alpha, but not neurotrophic factors. The neurons and astrocytes in the ventral horn of grafted animals also produced IL-6 and MIP-1-alpha, indicating a strong interaction between the graft and the host tissue. The infusion of function-blocking antibodies against all cytokines into the grafted cords completely abolished their motoneuron-rescuing effect, while neutralization of only IL-10 suggested its strong effectivity as concerns motoneuron survival and a milder effect on reinnervation. It is suggested that, apart from the anti-inflammatory function of IL-10, the pro-inflammatory cytokines produced exert a strong modulatory function in the CNS, promoting the prevention of neuronal cell death.


Subject(s)
Cytokines/metabolism , Motor Neurons/physiology , Neural Plate/transplantation , Radiculopathy/surgery , Signal Transduction/physiology , Stem Cell Transplantation/methods , Amidines , Animals , Cell Count , Cell Differentiation , Cell Movement , Cell Survival/physiology , Cytokines/genetics , Disease Models, Animal , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Laser Capture Microdissection , Mice , Muscle Strength/physiology , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Rats , Rats, Sprague-Dawley
20.
Exp Neurol ; 261: 367-76, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24873730

ABSTRACT

Axonal injury close to cell bodies of motoneurons induces the death of the vast majority of affected cells. Neurotrophic factors, such as brain derived neurotrophic factor (BDNF) and glial cell derived neurotrophic factor (GDNF), delivered close to the damaged motor pool in a non-regulated manner induce good survival of injured motoneurons and sprouting of their axons but fail to induce functional reinnervation. To avoid these drawbacks of high levels of neurotrophic expression, we devised an ex vivo gene therapy system to induce transient expression of BDNF/GDNF in transfected rat adipose tissue-derived stem cells (rASCs) which were grafted around the reimplanted ventral root, embedded in collagen gel. Strong BDNF/GDNF expression was induced in vitro in the first days after transfection with a significant decline in expression 10-14 days following transfection. Numerous axons of injured motoneurons were able to enter the reimplanted root following reimplantation and BDNF or GDNF treatment (192±17 SEM vs 187±12 SEM, respectively) and produce morphological and functional reinnervation. Treatment with a combined cell population (BDNF+GDNF-transfected rASCs) induced slightly improved reinnervation (247±24 SEM). In contrast, only few motoneurons regenerated their axons in control animals (63±4 SEM) which received untransfected cells. The axons of surviving motoneurons showed elongative growth typical of regenerative axons, without aberrant growth or coil formation of sprouting axons. These findings provide evidence that damaged motoneurons require limited and spatially directed amounts of BDNF and GDNF to support their survival and regeneration. Moreover, neurotrophic support appears to be needed only for a critical period of time not longer than for two weeks after injury.


Subject(s)
Axons/physiology , Brain-Derived Neurotrophic Factor/metabolism , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Motor Neurons/physiology , Peripheral Nervous System Diseases/therapy , Adipose Tissue/cytology , Amidines , Animals , Brain-Derived Neurotrophic Factor/genetics , Disease Models, Animal , Embryo, Mammalian , Female , Ganglia, Spinal/cytology , Gene Expression Regulation , Glial Cell Line-Derived Neurotrophic Factor/genetics , Locomotion/physiology , Male , Mice , Motor Neurons/cytology , Rats , Rats, Sprague-Dawley , Stem Cell Transplantation , Stem Cells/physiology
SELECTION OF CITATIONS
SEARCH DETAIL