Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Proc Biol Sci ; 286(1908): 20191270, 2019 08 14.
Article in English | MEDLINE | ID: mdl-31362642

ABSTRACT

Chitinozoans are organic-walled microfossils widely recorded in Ordovician to Devonian (ca 485-359 Mya) marine sediments and extensively used in high-resolution biostratigraphy. Their biological affinity remains unknown, but most commonly, they are interpreted as eggs of marine metazoans. Here, we provide new insights into their palaeobiology from three lines of inquiry. We examine morphological variation of a new, well-preserved Late Ordovician species, Hercochitina violana; analyse a compiled dataset of measurements on 378 species representing all known chitinozoan genera; and compare these data with the size variation of eggs of both extinct and extant aquatic invertebrates. The results indicate that the magnitude of size variation within chitinozoan species is larger than observed in fossil and modern eggs. Additionally, delicate morphological structures of chitinozoans, such as prosome and complex ornamentation, are inconsistent with the egg hypothesis. Distinct and continuous morphological variation in H. violana is more plausibly interpreted as an ontogenetic series of individual microorganisms, rather than as eggs.


Subject(s)
Fossils/ultrastructure , Invertebrates/classification , Animals , Invertebrates/ultrastructure , Microscopy, Electron, Scanning
2.
Proc Natl Acad Sci U S A ; 107(34): 14983-6, 2010 Aug 24.
Article in English | MEDLINE | ID: mdl-20696937

ABSTRACT

Our new data address the paradox of Late Ordovician glaciation under supposedly high pCO(2) (8 to 22x PAL: preindustrial atmospheric level). The paleobiogeographical distribution of chitinozoan ("mixed layer") marine zooplankton biotopes for the Hirnantian glacial maximum (440 Ma) are reconstructed and compared to those from the Sandbian (460 Ma): They demonstrate a steeper latitudinal temperature gradient and an equatorwards shift of the Polar Front through time from 55 degrees -70 degrees S to approximately 40 degrees S. These changes are comparable to those during Pleistocene interglacial-glacial cycles. In comparison with the Pleistocene, we hypothesize a significant decline in mean global temperature from the Sandbian to Hirnantian, proportional with a fall in pCO(2) from a modeled Sandbian level of approximately 8x PAL to approximately 5x PAL during the Hirnantian. Our data suggest that a compression of midlatitudinal biotopes and ecospace in response to the developing glaciation was a likely cause of the end-Ordovician mass extinction.


Subject(s)
Atmosphere/analysis , Carbon Dioxide/analysis , Climate , Animals , Ecosystem , Extinction, Biological , History, Ancient , Ice Cover , Temperature , Zooplankton
SELECTION OF CITATIONS
SEARCH DETAIL