Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Immunity ; 57(6): 1324-1344.e8, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38776918

ABSTRACT

Peripheral CD8+ T cell tolerance is a checkpoint in both autoimmune disease and anti-cancer immunity. Despite its importance, the relationship between tolerance-induced states and other CD8+ T cell differentiation states remains unclear. Using flow cytometric phenotyping, single-cell RNA sequencing (scRNA-seq), and chromatin accessibility profiling, we demonstrated that in vivo peripheral tolerance to a self-antigen triggered a fundamentally distinct differentiation state separate from exhaustion, memory, and functional effector cells but analogous to cells defectively primed against tumors. Tolerant cells diverged early and progressively from effector cells, adopting a transcriptionally and epigenetically distinct state within 60 h of antigen encounter. Breaching tolerance required the synergistic actions of strong T cell receptor (TCR) signaling and inflammation, which cooperatively induced gene modules that enhanced protein translation. Weak TCR signaling during bystander infection failed to breach tolerance due to the uncoupling of effector gene expression from protein translation. Thus, tolerance engages a distinct differentiation trajectory enforced by protein translation defects.


Subject(s)
CD8-Positive T-Lymphocytes , Cell Differentiation , Immune Tolerance , Protein Biosynthesis , Receptors, Antigen, T-Cell , CD8-Positive T-Lymphocytes/immunology , Animals , Cell Differentiation/immunology , Mice , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , Immune Tolerance/immunology , Protein Biosynthesis/immunology , Signal Transduction/immunology , Mice, Inbred C57BL , Autoantigens/immunology
2.
Cell Rep ; 42(10): 113301, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37858463

ABSTRACT

The differentiation of naive CD8+ T lymphocytes into cytotoxic effector and memory CTL results in large-scale changes in transcriptional and phenotypic profiles. Little is known about how large-scale changes in genome organization underpin these transcriptional programs. We use Hi-C to map changes in the spatial organization of long-range genome contacts within naive, effector, and memory virus-specific CD8+ T cells. We observe that the architecture of the naive CD8+ T cell genome is distinct from effector and memory genome configurations, with extensive changes within discrete functional chromatin domains associated with effector/memory differentiation. Deletion of BACH2, or to a lesser extent, reducing SATB1 DNA binding, within naive CD8+ T cells results in a chromatin architecture more reminiscent of effector/memory states. This suggests that key transcription factors within naive CD8+ T cells act to restrain T cell differentiation by actively enforcing a unique naive chromatin state.


Subject(s)
CD8-Positive T-Lymphocytes , Chromatin , Cell Differentiation , Transcription Factors/genetics , Immunologic Memory/genetics
3.
bioRxiv ; 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36909629

ABSTRACT

The differentiation of naïve CD8+ cytotoxic T lymphocytes (CTLs) into effector and memory states results in large scale changes in transcriptional and phenotypic profiles. Little is known about how large-scale changes in genome organisation reflect or underpin these transcriptional programs. We utilised Hi-C to map changes in the spatial organisation of long-range genome contacts within naïve, effector and memory virus-specific CD8+ T cells. We observed that the architecture of the naive CD8+ T cell genome was distinct from effector and memory genome configurations with extensive changes within discrete functional chromatin domains. However, deletion of the BACH2 or SATB1 transcription factors was sufficient to remodel the naïve chromatin architecture and engage transcriptional programs characteristic of differentiated cells. This suggests that the chromatin architecture within naïve CD8+ T cells is preconfigured to undergo autonomous remodelling upon activation, with key transcription factors restraining differentiation by actively enforcing the unique naïve chromatin state.

4.
Mol Aspects Med ; 88: 101152, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36368281

ABSTRACT

Granzymes are a family of small (∼32 kDa) serine proteases with a range of substrate specificities that are stored in, and released from, the cytoplasmic secretory vesicles ('granules') of cytotoxic T lymphocytes and natural killer cells. Granzymes are not digestive proteases but finely tuned processing enzymes that target their substrates in specific ways to activate various signalling pathways, or to inactivate viral proteins and other targets. Great emphasis has been placed on studying the pro-apoptotic functions of granzymes, which largely depend on their synergy with the pore-forming protein perforin, on which they rely for penetration into the target cell cytosol to access their substrates. While a critical role for granzyme B in target cell apoptosis is undisputed, both it and the remaining granzymes also influence a variety of other biological processes (including important immunoregulatory functions), which are discussed in this review. This includes the targeting of many extracellular as well as intracellular substrates, and can also lead to deleterious outcomes for the host if granzyme expression or function are dysregulated or abrogated. A final important consideration is that granzyme repertoire, biochemistry and function vary considerably across species, probably resulting from the pressures applied by viruses and other pathogens across evolutionary time. This has implications for the interpretation of granzyme function in preclinical models of disease.


Subject(s)
Serine , T-Lymphocytes, Cytotoxic , Humans , Granzymes/genetics , Granzymes/metabolism , Perforin , T-Lymphocytes, Cytotoxic/metabolism , Killer Cells, Natural/metabolism , Caspases , Apoptosis
5.
Nature ; 609(7926): 354-360, 2022 09.
Article in English | MEDLINE | ID: mdl-35978192

ABSTRACT

CD8+ T cells that respond to chronic viral infections or cancer are characterized by the expression of inhibitory receptors such as programmed cell death protein 1 (PD-1) and by the impaired production of cytokines. This state of restrained functionality-which is referred to as T cell exhaustion1,2-is maintained by precursors of exhausted T (TPEX) cells that express the transcription factor T cell factor 1 (TCF1), self-renew and give rise to TCF1- exhausted effector T cells3-6. Here we show that the long-term proliferative potential, multipotency and repopulation capacity of exhausted T cells during chronic infection are selectively preserved in a small population of transcriptionally distinct CD62L+ TPEX cells. The transcription factor MYB is not only essential for the development of CD62L+ TPEX cells and maintenance of the antiviral CD8+ T cell response, but also induces functional exhaustion and thereby prevents lethal immunopathology. Furthermore, the proliferative burst in response to PD-1 checkpoint inhibition originates exclusively from CD62L+ TPEX cells and depends on MYB. Our findings identify CD62L+ TPEX cells as a stem-like population that is central to the maintenance of long-term antiviral immunity and responsiveness to immunotherapy. Moreover, they show that MYB is a transcriptional orchestrator of two fundamental aspects of exhausted T cell responses: the downregulation of effector function and the long-term preservation of self-renewal capacity.


Subject(s)
CD8-Positive T-Lymphocytes , Programmed Cell Death 1 Receptor , Proto-Oncogene Proteins c-myb , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , Cell Proliferation , Cell Self Renewal , Hepatocyte Nuclear Factor 1-alpha/metabolism , Immunotherapy , L-Selectin/metabolism , Precursor Cells, T-Lymphoid/cytology , Precursor Cells, T-Lymphoid/immunology , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/metabolism , Proto-Oncogene Proteins c-myb/metabolism , Viruses/immunology
6.
Immunol Cell Biol ; 100(8): 636-652, 2022 09.
Article in English | MEDLINE | ID: mdl-35713361

ABSTRACT

Special AT-binding protein 1 (SATB1) is a chromatin-binding protein that has been shown to be a key regulator of T-cell development and CD4+ T-cell fate decisions and function. The underlying function for SATB1 in peripheral CD8+ T-cell differentiation processes is largely unknown. To address this, we examined SATB1-binding patterns in naïve and effector CD8+ T cells demonstrating that SATB1 binds to noncoding regulatory elements linked to T-cell lineage-specific gene programs, particularly in naïve CD8+ T cells. We then assessed SATB1 function using N-ethyl-N-nitrosourea-mutant mice that exhibit a point mutation in the SATB1 DNA-binding domain (termed Satb1m1Anu/m1Anu ). Satb1m1Anu/m1Anu mice exhibit diminished SATB1-binding, naïve, Satb1m1Anu/m1Anu CD8+ T cells exhibiting transcriptional and phenotypic characteristics reminiscent of effector T cells. Upon activation, the transcriptional signatures of Satb1m1Anu/m1Anu and wild-type effector CD8+ T cells converged. While there were no overt differences, primary respiratory infection of Satb1m1Anu/m1Anu mice with influenza A virus (IAV) resulted in a decreased proportion and number of IAV-specific CD8+ effector T cells recruited to the infected lung when compared with wild-type mice. Together, these data suggest that SATB1 has a major role in an appropriate transcriptional state within naïve CD8+ T cells and ensures appropriate CD8+ T-cell effector gene expression upon activation.


Subject(s)
Influenza A virus , Matrix Attachment Region Binding Proteins , Animals , CD8-Positive T-Lymphocytes , Cell Differentiation , Lymphocyte Activation , Matrix Attachment Region Binding Proteins/metabolism , Mice
7.
Nano Lett ; 22(6): 2506-2513, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35266392

ABSTRACT

First evidence of geometrical patterns and defined distances of biomolecules as fundamental parameters to regulate receptor binding and cell signaling have emerged recently. Here, we demonstrate the importance of controlled nanospacing of immunostimulatory agents for the activation of immune cells by exploiting DNA-based nanomaterials and pre-existing crystallography data. We created DNA origami nanoparticles that present CpG-motifs in rationally designed spatial patterns to activate Toll-like Receptor 9 in RAW 264.7 macrophages. We demonstrated that stronger immune activation is achieved when active molecules are positioned at the distance of 7 nm, matching the active dimer structure of the receptor. Moreover, we show how the introduction of linkers between particle and ligand can influence the spatial tolerance of binding. These findings are fundamental for a fine-tuned manipulation of the immune system, considering the importance of spatially controlled presentation of therapeutics to increase efficacy and specificity of immune-modulating nanomaterials where multivalent binding is involved.


Subject(s)
Nanostructures , Toll-Like Receptor 9 , DNA/chemistry , Ligands , Protein Binding , Toll-Like Receptor 9/genetics , Toll-Like Receptor 9/metabolism
8.
Nat Commun ; 12(1): 2691, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33976217

ABSTRACT

How innate and adaptive immune responses work in concert to resolve influenza disease is yet to be fully investigated in one single study. Here, we utilize longitudinal samples from patients hospitalized with acute influenza to understand these immune responses. We report the dynamics of 18 important immune parameters, related to clinical, genetic and virological factors, in influenza patients across different severity levels. Influenza disease correlates with increases in IL-6/IL-8/MIP-1α/ß cytokines and lower antibody responses. Robust activation of circulating T follicular helper cells correlates with peak antibody-secreting cells and influenza heamaglutinin-specific memory B-cell numbers, which phenotypically differs from vaccination-induced B-cell responses. Numbers of influenza-specific CD8+ or CD4+ T cells increase early in disease and retain an activated phenotype during patient recovery. We report the characterisation of immune cellular networks underlying recovery from influenza infection which are highly relevant to other infectious diseases.


Subject(s)
Antibody Formation/immunology , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cytokines/immunology , Influenza, Human/immunology , T-Lymphocytes, Helper-Inducer/immunology , Cohort Studies , Cytokines/metabolism , Hospitalization/statistics & numerical data , Humans , Influenza A virus/classification , Influenza A virus/genetics , Influenza A virus/physiology , Influenza Vaccines/immunology , Influenza, Human/virology , Middle Aged , Phylogeny , Vaccination/methods
9.
Nat Commun ; 12(1): 2782, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33986293

ABSTRACT

Chronic stimulation of CD8+ T cells triggers exhaustion, a distinct differentiation state with diminished effector function. Exhausted cells exist in multiple differentiation states, from stem-like progenitors that are the key mediators of the response to checkpoint blockade, through to terminally exhausted cells. Due to its clinical relevance, there is substantial interest in defining the pathways that control differentiation and maintenance of these subsets. Here, we show that chronic antigen induces the anergy-associated transcription factor EGR2 selectively within progenitor exhausted cells in both chronic LCMV and tumours. EGR2 enables terminal exhaustion and stabilizes the exhausted transcriptional state by both direct EGR2-dependent control of key exhaustion-associated genes, and indirect maintenance of the exhausted epigenetic state. We show that EGR2 is a regulator of exhaustion that epigenetically and transcriptionally maintains the differentiation competency of progenitor exhausted cells.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Clonal Anergy/immunology , Early Growth Response Protein 2/metabolism , Lymphopoiesis/physiology , Animals , Antigens/immunology , CD4-Positive T-Lymphocytes/immunology , Early Growth Response Protein 2/biosynthesis , Mice , Mice, Inbred C57BL , Mice, Knockout
10.
J Exp Med ; 218(6)2021 06 07.
Article in English | MEDLINE | ID: mdl-33914023

ABSTRACT

Tissue-resident memory T cells (TRM cells) are key elements of tissue immunity. Here, we investigated the role of the regulator of T cell receptor and cytokine signaling, Ptpn2, in the formation and function of TRM cells in skin. Ptpn2-deficient CD8+ T cells displayed a marked defect in generating CD69+ CD103+ TRM cells in response to herpes simplex virus type 1 (HSV-1) skin infection. This was accompanied by a reduction in the proportion of KLRG1- memory precursor cells and a transcriptional bias toward terminal differentiation. Of note, forced expression of KLRG1 was sufficient to impede TRM cell formation. Normalizing memory precursor frequencies by transferring equal numbers of KLRG1- cells restored TRM generation, demonstrating that Ptpn2 impacted skin seeding with precursors rather than downstream TRM cell differentiation. Importantly, Ptpn2-deficient TRM cells augmented skin autoimmunity but also afforded superior protection from HSV-1 infection. Our results emphasize that KLRG1 repression is required for optimal TRM cell formation in skin and reveal an important role of Ptpn2 in regulating TRM cell functionality.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunologic Memory/immunology , Lectins, C-Type/immunology , Protein Tyrosine Phosphatase, Non-Receptor Type 2/immunology , Receptors, Immunologic/immunology , Animals , Autoimmunity/immunology , Female , Herpes Simplex/immunology , Herpesvirus 1, Human/immunology , Mice , Mice, Inbred C57BL , Skin/immunology
11.
Front Immunol ; 11: 589641, 2020.
Article in English | MEDLINE | ID: mdl-33072137

ABSTRACT

Immunotherapy has revolutionized the treatment of cancer. Nevertheless, the majority of patients do not respond to therapy, meaning a deeper understanding of tumor immune evasion strategies is required to boost treatment efficacy. The vast majority of immunotherapy studies have focused on how treatment reinvigorates exhausted CD8+ T cells within the tumor. In contrast, how therapies influence regulatory processes within the draining lymph node is less well studied. In particular, relatively little has been done to examine how tumors may exploit peripheral CD8+ T cell tolerance, an under-studied immune checkpoint that under normal circumstances prevents detrimental autoimmune disease by blocking the initiation of T cell responses. Here we review the therapeutic potential of blocking peripheral CD8+ T cell tolerance for the treatment of cancer. We first comprehensively review what has been learnt about the regulation of CD8+ T cell peripheral tolerance from the non-tumor models in which peripheral tolerance was first defined. We next consider how the tolerant state differs from other states of negative regulation, such as T cell exhaustion and senescence. Finally, we describe how tumors hijack the peripheral tolerance immune checkpoint to prevent anti-tumor immune responses, and argue that disruption of peripheral tolerance may contribute to both the anti-cancer efficacy and autoimmune side-effects of immunotherapy. Overall, we propose that a deeper understanding of peripheral tolerance will ultimately enable the development of more targeted and refined cancer immunotherapy approaches.


Subject(s)
Immune Tolerance , Immunotherapy , Neoplasms/therapy , T-Lymphocytes/immunology , Animals , Humans , Neoplasms/immunology
12.
Influenza Other Respir Viruses ; 14(6): 678-687, 2020 11.
Article in English | MEDLINE | ID: mdl-32588557

ABSTRACT

BACKGROUND: Influenza viruses cause significant morbidity and mortality, especially in young children, elderly, pregnant women and individuals with co-morbidities. Patients with severe influenza disease are typically treated with one neuraminidase inhibitor, oseltamivir or zanamivir. These antivirals need to be taken early to be most effective and often lead to the emergence of drug resistance and/or decreased drug susceptibility. Combining oseltamivir with another antiviral with an alternative mode of action has the potential to improve clinical effectiveness and reduce drug resistance. METHODS: In this study, we utilized a host-targeting molecule RM-5061, a second-generation thiazolide, in combination with oseltamivir to determine whether these compounds could reduce viral burden and understand their effects on the immune response to influenza virus infection in mice, compared with either monotherapy or placebo. RESULTS: The combination of RM-5061 and OST administered for 5 days after influenza infection reduced viral burden at day 5 post-infection, when compared to placebo and RM-5061 monotherapy, but was not significantly different from oseltamivir monotherapy. The inflammatory cytokine milieu was also reduced in animals which received a combination therapy when compared to RM-5061 and placebo-treated animals. Antiviral treatment in all groups led to a reduction in CD8+ T-cell responses in the BAL when compared to placebo. CONCLUSIONS: To our knowledge, this is the first time a combination of a host-targeting compound, RM-5061, and neuraminidase inhibitor, OST, has been tested in vivo. This antiviral combination was safe in mice and led to reduced inflammatory responses following viral infection when compared to untreated animals.


Subject(s)
Antiviral Agents/therapeutic use , Orthomyxoviridae Infections/drug therapy , Oseltamivir/therapeutic use , Thiazoles/therapeutic use , Viral Load/drug effects , Animals , Bronchoalveolar Lavage Fluid/immunology , CD8-Positive T-Lymphocytes/pathology , Cytokines/metabolism , Inflammation , Influenza A virus/drug effects , Killer Cells, Natural/pathology , Lung/drug effects , Lung/immunology , Mice , Neutrophils/pathology , Orthomyxoviridae Infections/virology , Weight Loss/drug effects
13.
J Immunol ; 204(8): 2308-2315, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32152070

ABSTRACT

CRISPR/Cas9 technologies have revolutionized our understanding of gene function in complex biological settings, including T cell immunology. Current CRISPR-mediated gene editing strategies in T cells require in vitro stimulation or culture that can both preclude the study of unmanipulated naive T cells and alter subsequent differentiation. In this study, we demonstrate highly efficient gene editing within uncultured primary naive murine CD8+ T cells by electroporation of recombinant Cas9/sgRNA ribonucleoprotein immediately prior to in vivo adoptive transfer. Using this approach, we generated single and double gene knockout cells within multiple mouse infection models. Strikingly, gene deletion occurred even when the transferred cells were left in a naive state, suggesting that gene deletion occurs independent of T cell activation. Finally, we demonstrate that targeted mutations can be introduced into naive CD8+ T cells using CRISPR-based homology-directed repair. This protocol thus expands CRISPR-based gene editing approaches beyond models of robust T cell activation to encompass both naive T cell homeostasis and models of weak activation, such as tolerance and tumor models.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Gene Editing , Animals , CRISPR-Cas Systems/immunology , Clustered Regularly Interspaced Short Palindromic Repeats/immunology , Electroporation , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Polymorphism, Single Nucleotide/genetics , Polymorphism, Single Nucleotide/immunology
14.
Immunity ; 50(5): 1232-1248.e14, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31027998

ABSTRACT

Regulatory T cells (Treg cells) are important for preventing autoimmunity and maintaining tissue homeostasis, but whether Treg cells can adopt tissue- or immune-context-specific suppressive mechanisms is unclear. Here, we found that the enzyme hydroxyprostaglandin dehydrogenase (HPGD), which catabolizes prostaglandin E2 (PGE2) into the metabolite 15-keto PGE2, was highly expressed in Treg cells, particularly those in visceral adipose tissue (VAT). Nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ)-induced HPGD expression in VAT Treg cells, and consequential Treg-cell-mediated generation of 15-keto PGE2 suppressed conventional T cell activation and proliferation. Conditional deletion of Hpgd in mouse Treg cells resulted in the accumulation of functionally impaired Treg cells specifically in VAT, causing local inflammation and systemic insulin resistance. Consistent with this mechanism, humans with type 2 diabetes showed decreased HPGD expression in Treg cells. These data indicate that HPGD-mediated suppression is a tissue- and context-dependent suppressive mechanism used by Treg cells to maintain adipose tissue homeostasis.


Subject(s)
Dinoprostone/analogs & derivatives , Dinoprostone/metabolism , Hydroxyprostaglandin Dehydrogenases/metabolism , Intra-Abdominal Fat/immunology , T-Lymphocytes, Regulatory/enzymology , T-Lymphocytes, Regulatory/immunology , 3T3 Cells , Animals , Cell Line , Diabetes Mellitus, Type 2/metabolism , HEK293 Cells , Homeostasis/immunology , Humans , Hydroxyprostaglandin Dehydrogenases/genetics , Insulin Resistance/genetics , Intra-Abdominal Fat/cytology , Jurkat Cells , Lymphocyte Activation/immunology , Male , Mice , Mice, Knockout , STAT5 Transcription Factor/metabolism
15.
Immunol Cell Biol ; 97(5): 498-511, 2019 05.
Article in English | MEDLINE | ID: mdl-30803026

ABSTRACT

Special AT-rich binding protein-1 (SATB1) is a global chromatin organizer capable of activating or repressing gene transcription in mice and humans. The role of SATB1 is pivotal for T-cell development, with SATB1-knockout mice being neonatally lethal, although the exact mechanism is unknown. Moreover, SATB1 is dysregulated in T-cell lymphoma and proposed to suppress transcription of the Pdcd1 gene, encoding the immune checkpoint programmed cell death protein 1 (PD-1). Thus, SATB1 expression in T-cell subsets across different tissue compartments in humans is of potential importance for targeting PD-1. Here, we comprehensively analyzed SATB1 expression across different human tissues and immune compartments by flow cytometry and correlated this with PD-1 expression. We investigated SATB1 protein levels in pediatric and adult donors and assessed expression dynamics of this chromatin organizer across different immune cell subsets in human organs, as well as in antigen-specific T cells directed against acute and chronic viral infections. Our data demonstrate that SATB1 expression in humans is the highest in T-cell progenitors in the thymus, and then becomes downregulated in mature T cells in the periphery. Importantly, SATB1 expression in peripheral mature T cells is not static and follows fine-tuned expression dynamics, which appear to be tissue- and antigen-dependent. Furthermore, SATB1 expression negatively correlates with PD-1 expression in virus-specific CD8+ T cells. Our study has implications for understanding the role of SATB1 in human health and disease and suggests an approach for modulating PD-1 in T cells, highly relevant to human malignancies or chronic viral infections.


Subject(s)
Aging , Gene Expression Regulation/immunology , Matrix Attachment Region Binding Proteins , Adult , Aged , Aging/immunology , Aging/metabolism , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Matrix Attachment Region Binding Proteins/biosynthesis , Matrix Attachment Region Binding Proteins/immunology , Middle Aged , Organ Specificity/physiology , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/metabolism , Thymocytes/cytology , Thymocytes/immunology
16.
Nat Commun ; 9(1): 4706, 2018 11 09.
Article in English | MEDLINE | ID: mdl-30413689

ABSTRACT

Mucosal associated invariant T (MAIT) cells are evolutionarily-conserved, innate-like lymphocytes which are abundant in human lungs and can contribute to protection against pulmonary bacterial infection. MAIT cells are also activated during human viral infections, yet it remains unknown whether MAIT cells play a significant protective or even detrimental role during viral infections in vivo. Using murine experimental challenge with two strains of influenza A virus, we show that MAIT cells accumulate and are activated early in infection, with upregulation of CD25, CD69 and Granzyme B, peaking at 5 days post-infection. Activation is modulated via cytokines independently of MR1. MAIT cell-deficient MR1-/- mice show enhanced weight loss and mortality to severe (H1N1) influenza. This is ameliorated by prior adoptive transfer of pulmonary MAIT cells in both immunocompetent and immunodeficient RAG2-/-γC-/- mice. Thus, MAIT cells contribute to protection during respiratory viral infections, and constitute a potential target for therapeutic manipulation.


Subject(s)
Influenza, Human/pathology , Influenza, Human/virology , Mucosal-Associated Invariant T Cells/virology , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/virology , Adoptive Transfer , Animals , Cytokines/metabolism , Histocompatibility Antigens Class I/metabolism , Humans , Lung/pathology , Mice, Inbred C57BL , Minor Histocompatibility Antigens/metabolism
17.
J Immunol ; 201(11): 3282-3293, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30366957

ABSTRACT

Naive CD8+ T cells show phenotypic, functional, and epigenetic plasticity, enabling differentiation into distinct cellular states. However, whether memory CD8+ T cells demonstrate similar flexibility upon recall is poorly understood. We investigated the potential of influenza A virus (IAV)-specific memory CD8+ T cells from mice to alter their phenotype and function in response to reactivation in the presence of IL-4 and anti-IFN-γ Ab (type 2 conditions). Compared with naive CD8+ T cells, only a small proportion of IAV-specific memory T cells exhibited phenotypic and functional plasticity after clonal activation under type 2 conditions. The potential for modulation of cell-surface phenotype (CD8α expression) was associated with specific epigenetic changes at the Cd8a locus, was greater in central memory T cells than effector memory T cells, and was observed in endogenous memory cells of two TCR specificities. Using a novel technique for intracellular cytokine staining of small clonal populations, we showed that IAV-specific memory CD8+ T cells reactivated under type 2 conditions displayed robust IFN-γ expression and, unlike naive CD8+ T cells activated under type 2 conditions, produced little IL-4 protein. Secondary activation of memory cells under type 2 conditions increased GATA-3 levels with minimal change in T-bet levels. These data suggest that a small population of memory cells, especially central memory T cells, exhibits plasticity; however, most IAV-specific memory CD8+ T cells resist reprogramming upon reactivation and retain the functional state established during priming.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cell Plasticity , Orthomyxoviridae Infections/immunology , Orthomyxoviridae/physiology , Th2 Cells/immunology , Animals , Antigens, Viral/immunology , Cellular Microenvironment , Epigenesis, Genetic , Female , GATA3 Transcription Factor/genetics , Gene Expression Regulation , Immunologic Memory , Interferon-gamma/metabolism , Interleukin-4/metabolism , Lymphocyte Activation , Mice , Mice, Inbred C57BL
18.
Sci Transl Med ; 10(428)2018 02 14.
Article in English | MEDLINE | ID: mdl-29444980

ABSTRACT

Immunization with the inactivated influenza vaccine (IIV) remains the most effective strategy to combat seasonal influenza infections. IIV activates B cells and T follicular helper (TFH) cells and thus engenders antibody-secreting cells and serum antibody titers. However, the cellular events preceding generation of protective immunity in humans are inadequately understood. We undertook an in-depth analysis of B cell and T cell immune responses to IIV in 35 healthy adults. Using recombinant hemagglutinin (rHA) probes to dissect the quantity, phenotype, and isotype of influenza-specific B cells against A/California09-H1N1, A/Switzerland-H3N2, and B/Phuket, we showed that vaccination induced a three-pronged B cell response comprising a transient CXCR5-CXCR3+ antibody-secreting B cell population, CD21hiCD27+ memory B cells, and CD21loCD27+ B cells. Activation of circulating TFH cells correlated with the development of both CD21lo and CD21hi memory B cells. However, preexisting antibodies could limit increases in serum antibody titers. IIV had no marked effect on CD8+, mucosal-associated invariant T, γδ T, and natural killer cell activation. In addition, vaccine-induced B cells were not maintained in peripheral blood at 1 year after vaccination. We provide a dissection of rHA-specific B cells across seven human tissue compartments, showing that influenza-specific memory (CD21hiCD27+) B cells primarily reside within secondary lymphoid tissues and the lungs. Our study suggests that a rational design of universal vaccines needs to consider circulating TFH cells, preexisting serological memory, and tissue compartmentalization for effective B cell immunity, as well as to improve targeting cellular T cell immunity.


Subject(s)
B-Lymphocytes/immunology , Immunity, Cellular , Immunologic Memory , Influenza, Human/immunology , T-Lymphocytes, Helper-Inducer/immunology , Adult , Antibodies, Viral/immunology , Antibody-Producing Cells/metabolism , Antigens, CD/metabolism , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Humans , Influenza, Human/blood , Vaccination , Vaccines, Inactivated/immunology
19.
Front Med ; 12(1): 34-47, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29352371

ABSTRACT

Influenza is a major global health problem, causing infections of the respiratory tract, often leading to acute pneumonia, life-threatening complications and even deaths. Over the last seven decades, vaccination strategies have been utilized to protect people from complications of influenza, especially groups at high risk of severe disease. While current vaccination regimens elicit strain-specific antibody responses, they fail to generate cross-protection against seasonal, pandemic and avian viruses. Moreover, vaccines designed to generate influenza-specific T-cell responses are yet to be optimized. During natural infection, viral replication is initially controlled by innate immunity before adaptive immune responses (T cells and antibody-producing B cells) achieve viral clearance and host recovery. Adaptive T and B cells maintain immunological memory and provide protection against subsequent infections with related influenza viruses. Recent studies also shed light on the role of innate T-cells (MAIT cells, γδ cells, and NKT cells) in controlling influenza and linking innate and adaptive immune mechanisms, thus making them attractive targets for vaccination strategies. We summarize the current knowledge on influenza-specific innate MAIT and γδ T cells as well as adaptive CD8+ and CD4+ T cells, and discuss how these responses can be harnessed by novel vaccine strategies to elicit cross-protective immunity against different influenza strains and subtypes.


Subject(s)
Influenza Vaccines/therapeutic use , Influenza, Human/immunology , Orthomyxoviridae/immunology , T-Lymphocytes/immunology , Adaptive Immunity , Animals , Cross Protection , Humans , Immunity, Innate , Orthomyxoviridae Infections/immunology , Vaccination
20.
Cell Rep ; 21(12): 3624-3636, 2017 Dec 19.
Article in English | MEDLINE | ID: mdl-29262339

ABSTRACT

Infection triggers large-scale changes in the phenotype and function of T cells that are critical for immune clearance, yet the gene regulatory mechanisms that control these changes are largely unknown. Using ChIP-seq for specific histone post-translational modifications (PTMs), we mapped the dynamics of ∼25,000 putative CD8+ T cell transcriptional enhancers (TEs) differentially utilized during virus-specific T cell differentiation. Interestingly, we identified a subset of dynamically regulated TEs that exhibited acquisition of a non-canonical (H3K4me3+) chromatin signature upon differentiation. This unique TE subset exhibited characteristics of poised enhancers in the naive CD8+ T cell subset and demonstrated enrichment for transcription factor binding motifs known to be important for virus-specific CD8+ T cell differentiation. These data provide insights into the establishment and maintenance of the gene transcription profiles that define each stage of virus-specific T cell differentiation.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Cell Lineage , Enhancer Elements, Genetic , Histones/genetics , Influenza, Human/metabolism , Animals , CD8-Positive T-Lymphocytes/cytology , Cell Differentiation , Cells, Cultured , Epigenesis, Genetic , Histones/metabolism , Humans , Influenza, Human/genetics , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...