Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
Add more filters










Publication year range
1.
Development ; 150(16)2023 08 15.
Article in English | MEDLINE | ID: mdl-37530080

ABSTRACT

Teleost fish of the genus Danio are excellent models to study the genetic and cellular bases of pigment pattern variation in vertebrates. The two sister species Danio rerio and Danio aesculapii show divergent patterns of horizontal stripes and vertical bars that are partly caused by the divergence of the potassium channel gene kcnj13. Here, we show that kcnj13 is required only in melanophores for interactions with xanthophores and iridophores, which cause location-specific pigment cell shapes and thereby influence colour pattern and contrast in D. rerio. Cis-regulatory rather than protein coding changes underlie kcnj13 divergence between the two Danio species. Our results suggest that homotypic and heterotypic interactions between the pigment cells and their shapes diverged between species by quantitative changes in kcnj13 expression during pigment pattern diversification.


Subject(s)
Pigmentation , Zebrafish , Animals , Cell Shape , Melanophores/physiology , Pigmentation/genetics , Skin , Zebrafish/genetics
2.
Proc Natl Acad Sci U S A ; 119(30): e2122148119, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35858396

ABSTRACT

In Darwin's and Mendel's times, researchers investigated a wealth of organisms, chosen to solve particular problems for which they seemed especially well suited. Later, a focus on a few organisms, which are accessible to systematic genetic investigations, resulted in larger repertoires of methods and applications in these few species. Genetic animal model organisms with large research communities are the nematode Caenorhabditis elegans, the fly Drosophila melanogaster, the zebrafish Danio rerio, and the mouse Mus musculus. Due to their specific strengths, these model organisms have their strongest impacts in rather different areas of biology. C. elegans is unbeatable in the analysis of cell-to-cell contacts by saturation mutagenesis, as worms can be grown very fast in very high numbers. In Drosophila, a rich pattern is generated in the embryo as well as in adults that is used to unravel the underlying mechanisms of morphogenesis. The transparent larvae of zebrafish are uniquely suited to study organ development in a vertebrate, and the superb versatility of reverse genetics in the mouse made it the model organism to study human physiology and diseases. The combination of these models allows the in-depth genetic analysis of many fundamental biological processes using a plethora of different methods, finally providing many specific approaches to combat human diseases. The plant model Arabidopsis thaliana provides an understanding of many aspects of plant biology that might ultimately be useful for breeding crops.


Subject(s)
Arabidopsis , Growth and Development , Models, Animal , Animals , Arabidopsis/genetics , Arabidopsis/growth & development , Caenorhabditis elegans/genetics , Drosophila melanogaster/genetics , Genetic Research , Growth and Development/genetics , Humans , Mice , Plant Breeding , Zebrafish/genetics
3.
Dev Biol ; 485: 93-122, 2022 05.
Article in English | MEDLINE | ID: mdl-35247454

ABSTRACT

Experimental embryologists working at the turn of the 19th century suggested fundamental mechanisms of development, such as localized cytoplasmic determinants and tissue induction. However, the molecular basis underlying these processes proved intractable for a long time, despite concerted efforts in many developmental systems to isolate factors with a biological role. That road block was overcome by combining developmental biology with genetics. This powerful approach used unbiased genome-wide screens to isolate mutants with developmental defects and to thereby identify genes encoding key determinants and regulatory pathways that govern development. Two small invertebrates were the pioneers: the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans. Their modes of development differ in many ways, but the two together led the way to unraveling the molecular mechanisms of many fundamental developmental processes. The discovery of the grand homologies between key players in development throughout the animal kingdom underscored the usefulness of studying these small invertebrate models for animal development and even human disease. We describe developmental genetics in Drosophila and C. elegans up to the rise of genomics at the beginning of the 21st Century. Finally, we discuss themes that emerge from the histories of such distinct organisms and prospects of this approach for the future.


Subject(s)
Caenorhabditis elegans , Drosophila melanogaster , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Drosophila/genetics , Drosophila melanogaster/genetics , Genome , Genomics
4.
Blood Adv ; 6(5): 1474-1488, 2022 03 08.
Article in English | MEDLINE | ID: mdl-34979548

ABSTRACT

Macrophage colony-stimulating factor receptor (M-CSFR/CSF1R) signaling is crucial for the differentiation, proliferation, and survival of myeloid cells. The CSF1R pathway is a promising therapeutic target in many human diseases, including neurological disorders and cancer. Zebrafish are commonly used for human disease modeling and preclinical therapeutic screening. Therefore, it is necessary to understand the proper function of cytokine signaling in zebrafish to reliably model human-related diseases. Here, we investigate the roles of zebrafish Csf1rs and their ligands (Csf1a, Csf1b, and Il34) in embryonic and adult myelopoiesis. The proliferative effect of exogenous Csf1a on embryonic macrophages is connected to both receptors, Csf1ra and Csf1rb, however there is no evident effect of Csf1b in zebrafish embryonic myelopoiesis. Furthermore, we uncover an unknown role of Csf1rb in zebrafish granulopoiesis. Deregulation of Csf1rb signaling leads to failure in myeloid differentiation, resulting in neutropenia throughout the whole lifespan. Surprisingly, Il34 signaling through Csf1rb seems to be of high importance as both csf1rbΔ4bp-deficient and il34Δ5bp-deficient zebrafish larvae lack granulocytes. Our single-cell RNA sequencing analysis of adult whole kidney marrow (WKM) hematopoietic cells suggests that csf1rb is expressed mainly by blood and myeloid progenitors, and the expression of csf1ra and csf1rb is nonoverlapping. We point out differentially expressed genes important in hematopoietic cell differentiation and immune response in selected WKM populations. Our findings could improve the understanding of myeloid cell function and lead to the further study of CSF1R pathway deregulation in disease, mostly in cancerogenesis.


Subject(s)
Receptor, Macrophage Colony-Stimulating Factor , Zebrafish , Animals , Carrier Proteins/metabolism , Hematopoiesis , Ligands , Receptor Protein-Tyrosine Kinases/metabolism , Receptor, Macrophage Colony-Stimulating Factor/metabolism , Signal Transduction , Zebrafish/genetics
5.
Trends Genet ; 38(3): 231-245, 2022 03.
Article in English | MEDLINE | ID: mdl-34649739

ABSTRACT

Toll-like receptors (TLRs) play a crucial role in innate immunity in animals. Their discovery was rewarded a Nobel Prize to Jules Hoffmann and Bruce Beutler in 2011. The name Toll stems from a Drosophila mutant that was isolated in 1980 by Eric Wieschaus and myself as a byproduct of our screen for segmentation genes in Drosophila for which we received the Nobel Prize in 1995. It was named Toll due to its amazing dominant phenotype displayed in embryos from Toll/+ females. The analysis of Toll by Kathryn Anderson in my laboratory in Tübingen and subsequently in her own laboratory in Berkeley singled out Toll as a central component of the complex pathway regulating dorsoventral polarity and pattern of the Drosophila embryo. The Drosophila Toll story provides a striking example for the value of curiosity-driven research in providing fundamental insights that later gain strong impact on applied medical research.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/genetics , Female , Immunity, Innate , Nobel Prize , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism
7.
Nat Commun ; 11(1): 6230, 2020 12 04.
Article in English | MEDLINE | ID: mdl-33277491

ABSTRACT

The genetic basis of morphological variation provides a major topic in evolutionary developmental biology. Fish of the genus Danio display colour patterns ranging from horizontal stripes, to vertical bars or spots. Stripe formation in zebrafish, Danio rerio, is a self-organizing process based on cell-contact mediated interactions between three types of chromatophores with a leading role of iridophores. Here we investigate genes known to regulate chromatophore interactions in zebrafish that might have evolved to produce a pattern of vertical bars in its sibling species, Danio aesculapii. Mutant D. aesculapii indicate a lower complexity in chromatophore interactions and a minor role of iridophores in patterning. Reciprocal hemizygosity tests identify the potassium channel gene obelix/Kcnj13 as evolved between the two species. Complementation tests suggest evolutionary change through divergence in Kcnj13 function in two additional Danio species. Thus, our results point towards repeated and independent evolution of this gene during colour pattern diversification.


Subject(s)
Color , Pigmentation/genetics , Potassium Channels, Inwardly Rectifying/genetics , Zebrafish Proteins/genetics , Zebrafish/genetics , Animals , Chromatophores/metabolism , Evolution, Molecular , Hybridization, Genetic , Phenotype , Species Specificity , Zebrafish/classification
8.
Curr Biol ; 30(2): 298-303.e3, 2020 01 20.
Article in English | MEDLINE | ID: mdl-31902721

ABSTRACT

Color patterns are prominent features of many animals and are of high evolutionary relevance. In basal vertebrates, color patterns are composed of specialized pigment cells that arrange in multilayered mosaics in the skin. Zebrafish (Danio rerio), the preeminent model system for vertebrate color pattern formation, allows genetic screens as powerful approaches to identify novel functions in a complex biological system. Adult zebrafish display a series of blue and golden horizontal stripes, composed of black melanophores, silvery or blue iridophores, and yellow xanthophores. This stereotyped pattern is generated by self-organization involving direct cell contacts between all three types of pigment cells mediated by integral membrane proteins [1-5]. Here, we show that neuropeptide signaling impairs the striped pattern in a global manner. Mutations in the genes coding either for galanin receptor 1A (npm/galr1A) or for its ligand galanin (galn) result in fewer stripes, a pale appearance, and the mixing of cell types, thus resembling mutants with thyroid hypertrophy [6]. Zebrafish chimeras obtained by transplantations of npm/galr1A mutant blastula cells indicate that mutant pigment cells of all three types can contribute to a normal striped pattern in the appropriate host. However, loss of galr1A expression in a specific region of the brain is sufficient to cause the mutant phenotype in an otherwise wild-type fish. Increased thyroid hormone levels in mutant fish suggest that galanin signaling through Galr1A in the pituitary is an upstream regulator of the thyroid hormone pathway, which in turn promotes precise interactions of pigment cells during color pattern formation.


Subject(s)
Body Patterning/physiology , Galanin/genetics , Receptor, Galanin, Type 1/genetics , Signal Transduction , Zebrafish Proteins/genetics , Zebrafish/genetics , Animals , Brain/metabolism , Color , Embryo, Nonmammalian/metabolism , Embryonic Development , Female , Galanin/metabolism , Morphogenesis , Mutation , Pigmentation/genetics , Receptor, Galanin, Type 1/metabolism , Zebrafish/embryology , Zebrafish/metabolism , Zebrafish Proteins/metabolism
9.
Curr Opin Genet Dev ; 57: 31-38, 2019 08.
Article in English | MEDLINE | ID: mdl-31421397

ABSTRACT

The genetic basis of morphological variation, both within and between species, provides a major topic in evolutionary biology. Teleost fish produce most elaborate color patterns, and among the more than 20000 species a number have been chosen for more detailed analyses because they are suitable to study particular aspects of color pattern evolution. In several fish species, color variants and pattern variants have been collected, transcriptome analyses have been carried out, and the recent advent of gene editing tools, such as CRISPR/Cas9, has allowed the production of mutants. Covering mostly the literature from the last three years, we discuss the cellular basis of coloration and the identification of loci involved in color pattern differences between sister species in cichlids and Danio species, in which cis-regulatory changes seem to prevail.


Subject(s)
Cichlids/genetics , Evolution, Molecular , Pigmentation/genetics , Transcriptome/genetics , Animals , CRISPR-Cas Systems/genetics , Cichlids/physiology , Gene Expression Regulation, Developmental/genetics , Pigmentation/physiology , Zebrafish/genetics , Zebrafish/physiology
10.
Proc Natl Acad Sci U S A ; 115(4): E630-E638, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29317532

ABSTRACT

Mutations in anaplastic lymphoma kinase (ALK) are implicated in somatic and familial neuroblastoma, a pediatric tumor of neural crest-derived tissues. Recently, biochemical analyses have identified secreted small ALKAL proteins (FAM150, AUG) as potential ligands for human ALK and the related leukocyte tyrosine kinase (LTK). In the zebrafish Danio rerio, DrLtk, which is similar to human ALK in sequence and domain structure, controls the development of iridophores, neural crest-derived pigment cells. Hence, the zebrafish system allows studying Alk/Ltk and Alkals involvement in neural crest regulation in vivo. Using zebrafish pigment pattern formation, Drosophila eye patterning, and cell culture-based assays, we show that zebrafish Alkals potently activate zebrafish Ltk and human ALK driving downstream signaling events. Overexpression of the three DrAlkals cause ectopic iridophore development, whereas loss-of-function alleles lead to spatially distinct patterns of iridophore loss in zebrafish larvae and adults. alkal loss-of-function triple mutants completely lack iridophores and are larval lethal as is the case for ltk null mutants. Our results provide in vivo evidence of (i) activation of ALK/LTK family receptors by ALKALs and (ii) an involvement of these ligand-receptor complexes in neural crest development.


Subject(s)
Cytokines/metabolism , Protein-Tyrosine Kinases/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Zebrafish Proteins/metabolism , Amino Acid Sequence , Anaplastic Lymphoma Kinase , Animals , Cell Line, Tumor , Drosophila , Eye/metabolism , Humans , Lymphoma/enzymology , Neural Crest/enzymology , PC12 Cells , Pigmentation , Rats , Zebrafish
11.
Development ; 144(11): 2059-2069, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28506994

ABSTRACT

The development of the pigmentation pattern in zebrafish is a tightly regulated process that depends on both the self-organizing properties of pigment cells and extrinsic cues from other tissues. Many of the known mutations that alter the pattern act cell-autonomously in pigment cells, and our knowledge about external regulators is limited. Here, we describe novel zebrafish mau mutants, which encompass several dominant missense mutations in Aquaporin 3a (Aqp3a) that lead to broken stripes and short fins. A loss-of-function aqp3a allele, generated by CRISPR-Cas9, has no phenotypic consequences, demonstrating that Aqp3a is dispensable for normal development. Strikingly, the pigment cells from dominant mau mutants are capable of forming a wild-type pattern when developing in a wild-type environment, but the surrounding tissues in the mutants influence pigment cell behaviour and interfere with the patterning process. The mutated amino acid residues in the dominant alleles line the pore surface of Aqp3a and influence pore permeability. These results demonstrate an important effect of the tissue environment on pigment cell behaviour and, thereby, on pattern formation.


Subject(s)
Aquaporin 3/genetics , Mutation/genetics , Pigmentation , Zebrafish Proteins/genetics , Zebrafish/metabolism , Amino Acid Sequence , Animal Fins/anatomy & histology , Animal Fins/cytology , Animals , Aquaporin 3/chemistry , Aquaporin 3/metabolism , Chromatophores/metabolism , Genes, Dominant , Green Fluorescent Proteins/metabolism , Mutation, Missense/genetics , Permeability , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism , Zebrafish Proteins/chemistry , Zebrafish Proteins/metabolism
12.
Bioessays ; 39(3)2017 03.
Article in English | MEDLINE | ID: mdl-28176337

ABSTRACT

Pigment cells in zebrafish - melanophores, iridophores, and xanthophores - originate from neural crest-derived stem cells associated with the dorsal root ganglia of the peripheral nervous system. Clonal analysis indicates that these progenitors remain multipotent and plastic beyond embryogenesis well into metamorphosis, when the adult color pattern develops. Pigment cells share a lineage with neuronal cells of the peripheral nervous system; progenitors propagate along the spinal nerves. The proliferation of pigment cells is regulated by competitive interactions among cells of the same type. An even spacing involves collective migration and contact inhibition of locomotion of the three cell types distributed in superimposed monolayers in the skin. This mode of coloring the skin is probably common to fish, whereas different patterns emerge by species specific cell interactions among the different pigment cell types. These interactions are mediated by channels involved in direct cell contact between the pigment cells, as well as unknown cues provided by the tissue environment.


Subject(s)
Melanophores/physiology , Skin Pigmentation , Zebrafish/physiology , Adaptation, Biological , Animals , Biological Evolution , Cell Proliferation , Models, Biological , Organ Specificity , Signal Transduction , Skin/cytology , Skin/metabolism , Stem Cells/physiology
13.
Biol Open ; 5(11): 1680-1690, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27742608

ABSTRACT

The conspicuous striped coloration of zebrafish is produced by cell-cell interactions among three different types of chromatophores: black melanophores, orange/yellow xanthophores and silvery/blue iridophores. During color pattern formation xanthophores undergo dramatic cell shape transitions and acquire different densities, leading to compact and orange xanthophores at high density in the light stripes, and stellate, faintly pigmented xanthophores at low density in the dark stripes. Here, we investigate the mechanistic basis of these cell behaviors in vivo, and show that local, heterotypic interactions with dense iridophores regulate xanthophore cell shape transition and density. Genetic analysis reveals a cell-autonomous requirement of gap junctions composed of Cx41.8 and Cx39.4 in xanthophores for their iridophore-dependent cell shape transition and increase in density in light-stripe regions. Initial melanophore-xanthophore interactions are independent of these gap junctions; however, subsequently they are also required to induce the acquisition of stellate shapes in xanthophores of the dark stripes. In summary, we conclude that, whereas homotypic interactions regulate xanthophore coverage in the skin, their cell shape transitions and density is regulated by gap junction-mediated, heterotypic interactions with iridophores and melanophores.

14.
Annu Rev Cell Dev Biol ; 32: 1-46, 2016 10 06.
Article in English | MEDLINE | ID: mdl-27501451

ABSTRACT

In large-scale mutagenesis screens performed in 1979-1980 at the EMBL in Heidelberg, we isolated mutations affecting the pattern or structure of the larval cuticle in Drosophila. The 600 mutants we characterized could be assigned to 120 genes and represent the majority of such genes in the genome. These mutants subsequently provided a rich resource for understanding many fundamental developmental processes, such as the transcriptional hierarchies controlling segmentation, the establishment of cell states by signaling pathways, and the differentiation of epithelial cells. Most of the Heidelberg genes are now molecularly known, and many of them are conserved in other animals, including humans. Although the screens were initially driven entirely by curiosity, the mutants now serve as models for many human diseases. In this review, we describe the rationale of the screening procedures and provide a classification of the genes on the basis of their initial phenotypes and the subsequent molecular analyses.


Subject(s)
Drosophila/genetics , Genetic Testing , Mutation/genetics , Animals , Genes, Insect , Mutagenesis/genetics , Signal Transduction/genetics
15.
Dev Cell ; 38(3): 316-30, 2016 08 08.
Article in English | MEDLINE | ID: mdl-27453500

ABSTRACT

The neural crest is a transient, multipotent embryonic cell population in vertebrates giving rise to diverse cell types in adults via intermediate progenitors. The in vivo cell-fate potential and lineage segregation of these postembryonic progenitors is poorly understood, and it is unknown if and when the progenitors become fate restricted. We investigate the fate restriction in the neural crest-derived stem cells and intermediate progenitors in zebrafish, which give rise to three distinct adult pigment cell types: melanophores, iridophores, and xanthophores. By inducing clones in sox10-expressing cells, we trace and quantitatively compare the pigment cell progenitors at four stages, from embryogenesis to metamorphosis. At all stages, a large fraction of the progenitors are multipotent. These multipotent progenitors have a high proliferation ability, which diminishes with fate restriction. We suggest that multipotency of the nerve-associated progenitors lasting into metamorphosis may have facilitated the evolution of adult-specific traits in vertebrates.


Subject(s)
Embryo, Nonmammalian/cytology , Embryonic Development/physiology , Metamorphosis, Biological/physiology , Multipotent Stem Cells/cytology , Pigmentation/physiology , Zebrafish/growth & development , Animals , Biological Evolution , Cell Differentiation , Cell Lineage , Embryo, Nonmammalian/physiology , Gene Expression Regulation, Developmental , Melanophores/cytology , Melanophores/physiology , Multipotent Stem Cells/physiology , Neural Crest/cytology , Neural Crest/physiology , Phenotype , Zebrafish/genetics , Zebrafish/metabolism
16.
Biol Open ; 5(6): 736-44, 2016 Jun 15.
Article in English | MEDLINE | ID: mdl-27215328

ABSTRACT

Polyamines are small poly-cations essential for all cellular life. The main polyamines present in metazoans are putrescine, spermidine and spermine. Their exact functions are still largely unclear; however, they are involved in a wide variety of processes affecting cell growth, proliferation, apoptosis and aging. Here we identify idefix, a mutation in the zebrafish gene encoding the enzyme spermidine synthase, leading to a severe reduction in spermidine levels as shown by capillary electrophoresis-mass spectrometry. We show that spermidine, but not spermine, is essential for early development, organogenesis and colour pattern formation. Whereas in other vertebrates spermidine deficiency leads to very early embryonic lethality, maternally provided spermidine synthase in zebrafish is sufficient to rescue the early developmental defects. This allows us to uncouple them from events occurring later during colour patterning. Factors involved in the cellular interactions essential for colour patterning, likely targets for spermidine, are the gap junction components Cx41.8, Cx39.4, and Kir7.1, an inwardly rectifying potassium channel, all known to be regulated by polyamines. Thus, zebrafish provide a vertebrate model to study the in vivo effects of polyamines.

17.
Nat Commun ; 7: 11462, 2016 04 27.
Article in English | MEDLINE | ID: mdl-27118125

ABSTRACT

The adult striped pattern of zebrafish is composed of melanophores, iridophores and xanthophores arranged in superimposed layers in the skin. Previous studies have revealed that the assembly of pigment cells into stripes involves heterotypic interactions between all three chromatophore types. Here we investigate the role of homotypic interactions between cells of the same chromatophore type. Introduction of labelled progenitors into mutants lacking the corresponding cell type allowed us to define the impact of competitive interactions via long-term in vivo imaging. In the absence of endogenous cells, transplanted iridophores and xanthophores show an increased rate of proliferation and spread as a coherent net into vacant space. By contrast, melanophores have a limited capacity to spread in the skin even in the absence of competing endogenous cells. Our study reveals a key role for homotypic competitive interactions in determining number, direction of migration and individual spacing of cells within chromatophore populations.


Subject(s)
Body Patterning , Cell Proliferation , Chromatophores/cytology , Color , Skin Pigmentation , Animals , Blastomeres/cytology , Blastomeres/metabolism , Cell Communication , Chromatophores/metabolism , Melanophores/cytology , Melanophores/metabolism , Microscopy, Confocal , Skin/cytology , Skin/embryology , Skin/growth & development , Zebrafish
19.
Curr Top Dev Biol ; 117: 141-69, 2016.
Article in English | MEDLINE | ID: mdl-26969976

ABSTRACT

Color patterns are prominent features of many animals; they are highly variable and evolve rapidly leading to large diversities even within a single genus. As targets for natural as well as sexual selection, they are of high evolutionary significance. The zebrafish (Danio rerio) has become an important model organism for developmental biology and biomedical research in general, and it is the model organism to study color pattern formation in vertebrates. The fish display a conspicuous pattern of alternating blue and golden stripes on the body and on the anal and tail fins. This pattern is produced by three different types of pigment cells (chromatophores) arranged in precise layers in the hypodermis of the fish. In this essay, we will summarize the recent advances in understanding the developmental and genetic basis for stripe formation in the zebrafish. We will describe the cellular events leading to the formation of stripes during metamorphosis based on long-term lineage imaging. Mutant analysis has revealed that a number of signaling pathways are involved in the establishment and maintenance of the individual pigment cells. However, the striped pattern itself is generated by self-organizing mechanisms requiring interactions between all three pigment cell types. The involvement of integral membrane proteins, including connexins and potassium channels, suggests that direct physical contacts between chromatophores are involved, and that the directed transport of small molecules or bioelectrical coupling is important for these interactions. This mode of patterning by transmitting spatial information between adjacent tissues within three superimposed cell layers is unprecedented in other developmental systems. We propose that variations in the patterns among Danio species are caused by allelic differences in the genes responsible for these interactions.


Subject(s)
Body Patterning/genetics , Chromatophores/metabolism , Metamorphosis, Biological/genetics , Morphogenesis/genetics , Zebrafish/growth & development , Zebrafish/genetics , Animals , Phenotype
20.
Pigment Cell Melanoma Res ; 29(3): 284-96, 2016 May.
Article in English | MEDLINE | ID: mdl-26801003

ABSTRACT

The zebrafish striped pattern results from the interplay among three pigment cell types; black melanophores, yellow xanthophores and silvery iridophores, making it a valuable model to study pattern formation in vivo. It has been suggested that iridophore proliferation, dispersal and cell shape transitions play an important role during stripe formation; however, the underlying molecular mechanisms remain poorly understood. Using gain- and loss-of-function alleles of leucocyte tyrosine kinase (ltk) and a pharmacological inhibitor approach, we show that Ltk specifically regulates iridophore establishment, proliferation and survival. Mutants in shady/ltk lack iridophores and display an abnormal body stripe pattern. Moonstone mutants, ltk(mne) , display ectopic iridophores, suggesting hyperactivity of the mutant Ltk. The dominant ltk(mne) allele carries a missense mutation in a conserved position of the kinase domain that highly correlates with neuroblastomas in mammals. Chimeric analysis suggests a novel physiological role of Ltk in the regulation of iridophore proliferation by homotypic competition.


Subject(s)
Chromatophores/cytology , Chromatophores/enzymology , Protein-Tyrosine Kinases/metabolism , Zebrafish Proteins/metabolism , Zebrafish/metabolism , Aging , Amino Acid Sequence , Animals , Base Sequence , Behavior, Animal , Body Patterning , Cell Communication , Cell Proliferation , Cell Survival , Melanophores/cytology , Melanophores/metabolism , Mutation/genetics , Phenotype , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/genetics , Zebrafish Proteins/chemistry , Zebrafish Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...