Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Control Release ; 373: 224-239, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39002796

ABSTRACT

Intravitreal injection of biodegradable implant drug carriers shows promise in reducing the injection frequency for neovascular retinal diseases. However, current intravitreal ocular devices have limitations in adjusting drug release rates for individual patients, thereby affecting treatment effectiveness. Accordingly, we developed mesoporous silica nanoparticles (MSNs) featuring a surface that reverse its charge in response to reactive oxygen species (ROS) for efficient delivery of humanin peptide (HN) to retinal epithelial cells (ARPE-19). The MSN core, designed with a pore size of 2.8 nm, ensures a high HN loading capacity 64.4% (w/w). We fine-tuned the external surface of the MSNs by incorporating 20% Acetyl-L-arginine (Ar) to create a partial positive charge, while 80% conjugated thioketal (TK) methoxy polyethylene glycol (mPEG) act as ROS gatekeeper. Ex vivo experiments using bovine eyes revealed the immobilization of Ar-MSNs-TK-PEG (mean zeta potential: 2 mV) in the negatively charged vitreous. However, oxidative stress reversed the surface charge to -25 mV by mPEG loss, facilitating the diffusion of the nanoparticles impeded with HN. In vitro studies showed that ARPE-19 cells effectively internalize HN-loaded Ar-MSNs-TK, subsequently releasing the peptide, which offered protection against oxidative stress-induced apoptosis, as evidenced by reduced TUNEL and caspase3 activation. The inhibition of retinal neovascularization was further validated in an in vivo oxygen-induced retinopathy (OIR) mouse model.

2.
ACS Nano ; 18(27): 17681-17693, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38920103

ABSTRACT

This study investigates the applicability of six transition metal dichalcogenides to efficient therapeutic drug monitoring of ten antiepileptic drugs using laser desorption/ionization-mass spectrometry. We found that molybdenum ditelluride and tungsten ditelluride are suitable for the sensitive quantification of therapeutic drugs. The contribution of tellurium to the enhanced efficiency of laser desorption ionization was validated through theoretical calculations utilizing an integrated model that incorporates transition-metal dichalcogenides and antiepileptic drugs. The results of our theoretical calculations suggest that the relatively low surface electron density for the tellurium-containing transition metal dichalcogenides induces stronger Coulombic interactions, which results in enhanced laser desorption and ionization efficiency. To demonstrate applicability, up to 120 patient samples were analyzed to determine drug concentrations, and the results were compared with those of immunoassay and liquid chromatography-tandem mass spectrometry. Agreements among these methods were statistically evaluated using the Passing-Bablok regression and Bland-Altman analysis. Furthermore, our method has been shown to be applicable to the simultaneous detection and multiplexed quantification of antiepileptic drugs.


Subject(s)
Anticonvulsants , Drug Monitoring , Drug Monitoring/methods , Humans , Anticonvulsants/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Chalcogens/chemistry
3.
Adv Healthc Mater ; 13(11): e2303713, 2024 04.
Article in English | MEDLINE | ID: mdl-38216129

ABSTRACT

ViSiON (visualization materials composed of silicon-based optical nanodisks) is presented, which offers a unique optical combination of near-infrared (NIR) optical properties and biodegradability. Initially, numerical simulations are conducted to calculate the total extinction and scattering effects of ViSiON by the diameter-to-thickness ratio, predicting precise control over its scattering properties in the NIR region. A top-down patterning technique is employed to synthesize ViSiON with accurate diameter and thickness control. ViSiON with a 50 nm thickness exhibits scattering properties over 400 times higher than that of 30 nm, rendering it suitable as a contrast agent for optical coherence tomography (OCT), especially in ophthalmic applications. Furthermore, ViSiON possesses inherent biodegradability in media, with ≈95% degradation occurring after 48 h, and the degradation rate can be finely tuned based on the quantity of protein coating applied to the surface. Subsequently, the OCT imaging capability is validated even within vessels smaller than 300 µm, simulating retinal vasculature using a retinal phantom. Then, using an ex ovo chick embryo model, it is demonstrated that ViSiON enhances the strength of protein membranes by 6.17 times, thereby presenting the potential for ViSiON as an OCT imaging probe capable of diagnosing retinal diseases.


Subject(s)
Silicon , Tomography, Optical Coherence , Silicon/chemistry , Animals , Tomography, Optical Coherence/methods , Chick Embryo , Ophthalmology/methods , Phantoms, Imaging , Spectroscopy, Near-Infrared/methods , Retina/diagnostic imaging , Contrast Media/chemistry , Nanostructures/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL