Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Ann Oncol ; 32(12): 1571-1581, 2021 12.
Article in English | MEDLINE | ID: mdl-34656740

ABSTRACT

BACKGROUND: Adjuvant abemaciclib combined with endocrine therapy (ET) previously demonstrated clinically meaningful improvement in invasive disease-free survival (IDFS) and distant relapse-free survival (DRFS) in hormone receptor-positive, human epidermal growth factor receptor 2-negative, node-positive, high-risk early breast cancer at the second interim analysis, however follow-up was limited. Here, we present results of the prespecified primary outcome analysis and an additional follow-up analysis. PATIENTS AND METHODS: This global, phase III, open-label trial randomized (1 : 1) 5637 patients to adjuvant ET for ≥5 years ± abemaciclib for 2 years. Cohort 1 enrolled patients with ≥4 positive axillary lymph nodes (ALNs), or 1-3 positive ALNs and either grade 3 disease or tumor ≥5 cm. Cohort 2 enrolled patients with 1-3 positive ALNs and centrally determined high Ki-67 index (≥20%). The primary endpoint was IDFS in the intent-to-treat population (cohorts 1 and 2). Secondary endpoints were IDFS in patients with high Ki-67, DRFS, overall survival, and safety. RESULTS: At the primary outcome analysis, with 19 months median follow-up time, abemaciclib + ET resulted in a 29% reduction in the risk of developing an IDFS event [hazard ratio (HR) = 0.71, 95% confidence interval (CI) 0.58-0.87; nominal P = 0.0009]. At the additional follow-up analysis, with 27 months median follow-up and 90% of patients off treatment, IDFS (HR = 0.70, 95% CI 0.59-0.82; nominal P < 0.0001) and DRFS (HR = 0.69, 95% CI 0.57-0.83; nominal P < 0.0001) benefit was maintained. The absolute improvements in 3-year IDFS and DRFS rates were 5.4% and 4.2%, respectively. Whereas Ki-67 index was prognostic, abemaciclib benefit was consistent regardless of Ki-67 index. Safety data were consistent with the known abemaciclib risk profile. CONCLUSION: Abemaciclib + ET significantly improved IDFS in patients with hormone receptor-positive, human epidermal growth factor receptor 2-negative, node-positive, high-risk early breast cancer, with an acceptable safety profile. Ki-67 index was prognostic, but abemaciclib benefit was observed regardless of Ki-67 index. Overall, the robust treatment benefit of abemaciclib extended beyond the 2-year treatment period.


Subject(s)
Breast Neoplasms , Receptor, ErbB-2 , Aminopyridines , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Benzimidazoles , Breast Neoplasms/drug therapy , Chemotherapy, Adjuvant , Disease-Free Survival , Female , Humans , Ki-67 Antigen , Neoplasm Recurrence, Local/drug therapy
2.
Leukemia ; 27(2): 398-408, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23103841

ABSTRACT

Internal tandem duplications (ITDs) in the fms-like tyrosine kinase receptor (FLT3-ITDs) confer a poor prognosis in acute myeloid leukemia (AML). We hypothesized that increased recruitment of the protein tyrosine phosphatase, Shp2, to FLT3-ITDs contributes to FLT3 ligand (FL)-independent hyperproliferation and STAT5 activation. Co-immunoprecipitation demonstrated constitutive association of Shp2 with the FLT3-ITD, N51-FLT3, as well as with STAT5. Knockdown of Shp2 in Baf3/N51-FLT3 cells significantly reduced proliferation while having little effect on WT-FLT3-expressing cells. Consistently, mutation of N51-FLT3 tyrosine 599 to phenylalanine or genetic disruption of Shp2 in N51-FLT3-expressing bone marrow low-density mononuclear cells reduced proliferation and STAT5 activation. In transplants, genetic disruption of Shp2 in vivo yielded increased latency to and reduced severity of FLT3-ITD-induced malignancy. Mechanistically, Shp2 co-localizes with nuclear phospho-STAT5, is present at functional interferon-γ activation sites (GAS) within the BCL2L1 promoter, and positively activates the human BCL2L1 promoter, suggesting that Shp2 works with STAT5 to promote pro-leukemogenic gene expression. Further, using a small molecule Shp2 inhibitor, the proliferation of N51-FLT3-expressing bone marrow progenitors and primary AML samples was reduced in a dose-dependent manner. These findings demonstrate that Shp2 positively contributes to FLT3-ITD-induced leukemia and suggest that Shp2 inhibition may provide a novel therapeutic approach to AML.


Subject(s)
Cell Proliferation , Hematopoietic Stem Cells/cytology , Leukemia, Myeloid, Acute/pathology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/physiology , Tandem Repeat Sequences/genetics , fms-Like Tyrosine Kinase 3/metabolism , Animals , Base Sequence , Blotting, Western , Bone Marrow Transplantation , Chromatin Immunoprecipitation , Fluorescent Antibody Technique , Hematopoietic Stem Cells/metabolism , Humans , Immunoprecipitation , Indoles/pharmacology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/mortality , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Sequence Data , Mutation/genetics , Phosphorylation/drug effects , Precursor Cells, B-Lymphoid/cytology , Precursor Cells, B-Lymphoid/drug effects , Precursor Cells, B-Lymphoid/metabolism , Promoter Regions, Genetic/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , STAT5 Transcription Factor/genetics , STAT5 Transcription Factor/metabolism , Survival Rate , Triazoles/pharmacology , bcl-X Protein/genetics , bcl-X Protein/metabolism , fms-Like Tyrosine Kinase 3/genetics
SELECTION OF CITATIONS
SEARCH DETAIL