Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
medRxiv ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39211865

ABSTRACT

We investigated the effectiveness of navtemadlin (KRT-232) in treating recurrent glioblastoma. A surgical window-of-opportunity trial ( NCT03107780 ) was conducted on 21 patients to determine achievable drug concentrations within tumor tissue and examine mechanisms of response and resistance. Both 120 mg and 240 mg daily dosing achieved a pharmacodynamic impact. Sequencing of three recurrent tumors revealed an absence of TP53 -inactivating mutations, indicating alternative mechanisms of resistance. In patient-derived GBM models, the lower range of clinically achieved navtemadlin concentrations induced partial tumor cell death as monotherapy. However, combining navtemadlin with temozolomide increased apoptotic rates while sparing normal bone marrow cells in vitro, which in return underwent reversible growth arrest. These results indicate that clinically achievable doses of navtemadlin generate significant pharmacodynamic effects and suggest that combined treatment with standard-of-care DNA damaging chemotherapy is a route to durable survival benefits. Statement of significance: Tissue sampling during this clinical trial allowed us to assess mechanisms of response and resistance associated with navtemadlin treatment in recurrent GBM. We report that clinically achievable doses of navtemadlin induce pharmacodynamic effects in tumor tissue, and suggest combinations with standard-of-care chemotherapy for durable clinical benefit.

2.
JCO Oncol Pract ; : OP2400080, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38917404

ABSTRACT

PURPOSE: High-dose methotrexate (HD-MTX) is the backbone of curative therapy for CNS lymphoma. Because of toxicity, MTX is administered in the inpatient setting along with hyperhydration and monitoring until MTX clearance is documented (3-5 days). Frequent hospitalizations result in patient time away from work, home, and exposure to potential iatrogenic/nosocomial complications. Here, we aim to demonstrate feasibility of HD-MTX administration in the outpatient setting with low-dose glucarpidase facilitating clearance. METHODS: This is a prospective nonrandomized study of outpatient HD-MTX followed by glucarpidase 2000u (ClinicalTrials.gov identifier: NCT03684980). Eligible patients had CNS lymphoma, creatinine <1.3 mg/dL, and previously tolerated HD-MTX. Patients were enrolled between May 2020 December 2021 for one HD-MTX treatment. Patients could re-enroll for subsequent doses of HD-MTX as eligibility and slots permitted. MTX 3.5 g/m2 was administered once over 2 hours, preceded by standard hydration and followed by an additional 2 hours of dextrose 5% in water with NaHCO3 75 mEq at 150 cc/h. Glucarpidase 2000u was administered once in the clinic 24 hours later. The primary end point was MTX level 48 hours after HD-MTX. RESULTS: Twenty doses of outpatient HD-MTX with glucarpidase were administered to seven patients. After 20 of 20 (100%) treatments, serum MTX levels were reduced to <100 nmol/L. Treatments were well-tolerated, and no admissions were required. One patient received additional outpatient hydration for elevated creatinine. Development of antiglucarpidase antibody was rare and did not affect treatment. CONCLUSION: Outpatient HD-MTX with glucarpidase is safe and well-tolerated and has the potential to alter standard treatment for CNS lymphoma.

3.
Clin Cancer Res ; 30(10): 2048-2056, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38446982

ABSTRACT

PURPOSE: Although fewer than 5% of high-grade gliomas (HGG) are BRAF-V600E mutated, these tumors are notable as BRAF-targeted therapy shows efficacy for some populations. The purpose of this study was to evaluate response to the combination of encorafenib with binimetinib in adults with recurrent BRAF-V600-mutated HGG. PATIENTS AND METHODS: In this phase 2, open-label, Adult Brain Tumor Consortium (ABTC) trial (NCT03973918), encorafenib and binimetinib were administered at their FDA-approved doses continuously in 28-day cycles. Eligible patients were required to have HGG or glioblastoma with a BRAF-V600E alteration that was recurrent following at least one line of therapy, including radiotherapy. RESULTS: Five patients enrolled between January 2020 and administrative termination in November 2021 (due to closure of the ABTC). Enrolled patients received treatment for 2 to 40 months; currently one patient remains on treatment. Centrally determined radiographic response rate was 60%, with one complete response and two partial responses. Methylation profiling revealed that all tumors cluster most closely with anaplastic pleomorphic xanthoastrocytoma (PXA). Transcriptional profile for MAPK-response signature was similar across all tumors at baseline and did not correlate with response in this small population. Circulating tumor DNA measured in plasma samples before treatment, during response, and upon progression showed feasibility of detection for the BRAF-V600E alteration. No new safety signal was detected. CONCLUSIONS: Encorafenib and binimetinib exhibit positive tumor responses in patients with recurrent BRAF-V600E mutant HGG in this small series, warranting therapeutic consideration. Although toxicity remains a concern for BRAF-targeted therapies, no new safety signal was observed in these patients.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Benzimidazoles , Brain Neoplasms , Carbamates , Glioma , Mutation , Proto-Oncogene Proteins B-raf , Sulfonamides , Humans , Proto-Oncogene Proteins B-raf/genetics , Carbamates/administration & dosage , Carbamates/therapeutic use , Benzimidazoles/administration & dosage , Benzimidazoles/adverse effects , Benzimidazoles/therapeutic use , Sulfonamides/administration & dosage , Sulfonamides/therapeutic use , Sulfonamides/adverse effects , Female , Male , Middle Aged , Glioma/drug therapy , Glioma/genetics , Glioma/pathology , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Aged , Treatment Outcome , Neoplasm Grading
4.
Neurooncol Adv ; 6(1): vdae009, 2024.
Article in English | MEDLINE | ID: mdl-38327681

ABSTRACT

Background: Recurrent glioblastoma (rGBM) has limited treatment options. This phase 1 protocol was designed to study the safety and preliminary efficacy of TPI 287, a central nervous system penetrant microtubule stabilizer, in combination with bevacizumab (BEV) for the treatment of rGBM. Methods: GBM patients with up to 2 prior relapses without prior exposure to anti-angiogenic therapy were eligible. A standard 3 + 3 design was utilized to determine the maximum tolerated dose (MTD) of TPI 287. Cohorts received TPI 287 at 140-220 mg/m2 every 3 weeks and BEV 10 mg/kg every 2 weeks during 6-week cycles. An MRI was performed after each cycle, and treatment continued until progression as determined via response assessment in neuro-oncology criteria. Results: Twenty-four patients were enrolled at 6 centers. Treatment was generally well tolerated. Fatigue, myelosuppression, and peripheral neuropathy were the most common treatment emergent adverse events. Dose-limiting toxicity was not observed, thus the MTD was not determined. Twenty-three patients were evaluable for median and 6-month progression-free survival, which were 5.5 months (mo) and 40%, respectively. Median and 12-month overall survival were 13.4 mo and 64%, respectively. The optimal phase 2 dose was determined to be 200 mg/m2. Conclusions: TPI 287 can be safely combined with BEV for the treatment of rGBM and preliminary efficacy supports further investigation of this combination.

5.
PLoS One ; 19(1): e0291128, 2024.
Article in English | MEDLINE | ID: mdl-38285688

ABSTRACT

PURPOSE: AT-101 is an oral bcl-2 family protein inhibitor (Bcl-2, Bcl-XL, Mcl-1, Bcl-W) and potent inducer of proapoptotic proteins. A prior study of the parent compound, racemic gossypol, demonstrated objective and durable responses in patients with malignant glioma. AT-101 has demonstrated synergy with radiation in animal models. The objectives of trial NABTT 0602 were to determine the MTD of AT-101 concurrent with temozolomide (TMZ) and radiation therapy (RT) (Arm I) and to determine the MTD of AT-101 when given with adjuvant TMZ after completion of standard chemoradiation (Arm 2). Separately in trial NABTT 0702, the survival and response rates of single agent AT-101 were evaluated in patients with recurrent glioblastoma. METHODS: In NABTT 0602 Phase I, a 3+3 design was used to define MTDs after maximal safe resection, patients with newly diagnosed glioblastoma received standard concurrent RT (60 Gy) and TMZ 75 mg/m2/day followed by adjuvant TMZ 150-200 mg/m2 days 1-5 in 28-day cycles (Stupp regimen). In Arm I, AT-101 was administered M-F during the six weeks of RT beginning 20 mg qd. In Arm 2, concurrent with each adjuvant cycle of TMZ, AT-101 was administered at a starting dose of 20 mg, days 1-21 followed by 7-day break for a maximum of 6 cycles. The PK blood samples were collected in the first three patients in each cohort of arm 1. In NABTT 0702 patients with recurrent glioblastoma received 20 mg p.o. per day for 21 of 28 days in repeated cycles to assess overall survival (OS). RESULTS: A total of sixteen patients were enrolled on the two study arms of NABTT 0602. In Arm 1 AT-101 was escalated from 20 to 30 mg where one of six patients experienced DLT (grade 3 GI ulcer). On Arm 2 one patient treated at 20 mg experienced DLT (grade 3 ileus, nausea and diarrhea). The cohort was expanded to include seven patients without observation of DLT. PK results were consistent with drug levels from non-CNS studies. At study closure six patients are still alive. The median survival times for Arm I and Arm II are 15.2 months and 18.2 months, respectively. In NABTT 0702 fifty-six patients were enrolled and forty-three were eligible for imaging response. Sixteen patients (29%) had stable disease as best response and one partial response was observed. The median OS with single agent AT-101 was 5.7 months (95%CI: 3.8-7.6 months) for patients with rGBM. CONCLUSIONS: AT-101 can be safely administered with radiation therapy and TMZ in patients with newly diagnosed glioblastoma without toxicity unique to patients with CNS tumors. Because of toxicity observed in non-CNS AT-101 clinical trials, further dose-escalation was not attempted. The recommended dose for future studies that utilize continual AT-101 exposure is 20 mg days M-F concurrent with RT/TMZ and 20 mg days 1-21 for each 28-day cycle of TMZ. AT-101 has limited activity as a single agent in unselected patients with recurrent glioblastoma. Future trials should attempt to better understand resistance mechanisms and consider combination therapy.


Subject(s)
Brain Neoplasms , Glioblastoma , Gossypol , Humans , Glioblastoma/pathology , Gossypol/pharmacology , Gossypol/therapeutic use , Dacarbazine/pharmacology , Dacarbazine/therapeutic use , Temozolomide/therapeutic use , Proto-Oncogene Proteins c-bcl-2 , Brain Neoplasms/pathology , Antineoplastic Agents, Alkylating/therapeutic use
6.
CNS Oncol ; 11(4): CNS90, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36408899

ABSTRACT

Glioblastoma (GBM) is the most common malignant adult brain and has a poor prognosis. Routine post-treatment MRI evaluations are required to assess treatment response and disease progression. We present a case of an 83-year-old female who underwent MRI assessment of post-treatment GBM after intravenous iron replacement therapy, ferumoxytol. The brain MRI revealed unintended alteration of MRI signal characteristics from the iron containing agent which confounded diagnostic interpretation and subsequently, the treatment planning. Ferumoxytol injection prior to contrast enhanced MRI must be screened in post-treatment GBM patients to accurately evaluate tumor activity.


Subject(s)
Brain Neoplasms , Glioblastoma , Adult , Female , Humans , Aged, 80 and over , Ferrosoferric Oxide , Glioblastoma/diagnostic imaging , Glioblastoma/drug therapy , Contrast Media , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/drug therapy , Magnetic Resonance Imaging , Iron
7.
Neurooncol Adv ; 4(1): vdab186, 2022.
Article in English | MEDLINE | ID: mdl-35088051

ABSTRACT

BACKGROUND: Glioblastoma (GBM) has a 5-year survival rate of 3%-5%. GBM treatment includes maximal resection followed by radiotherapy with concomitant and adjuvant temozolomide (TMZ). Cytochrome C oxidase (CcO) is a mitochondrial enzyme involved in the mechanism of resistance to TMZ. In a prior retrospective trial, CcO activity in GBMs inversely correlated with clinical outcome. The current Cyto-C study was designed to prospectively evaluate and validate the prognostic value of tumor CcO activity in patients with newly diagnosed primary GBM, and compared to the known prognostic value of MGMT promoter methylation status. METHODS: This multi-institutional, blinded, prospective biomarker study enrolled 152 patients with newly diagnosed GBM who were to undergo surgical resection and would be candidates for standard of care. The primary end point was overall survival (OS) time, and the secondary end point was progression-free survival (PFS) time. Tumor CcO activity and MGMT promoter methylation status were assayed in a centralized laboratory. RESULTS: OS and PFS did not differ by high or low tumor CcO activity, and the prognostic validity of MGMT promoter methylation was confirmed. Notably, a planned exploratory analysis suggested that the combination of low CcO activity and MGMT promoter methylation in tumors may be predictive of long-term survival. CONCLUSIONS: Tumor CcO activity alone was not confirmed as a prognostic marker in GBM patients. However, the combination of low CcO activity and methylated MGMT promoter may reveal a subgroup of GBM patients with improved long-term survival that warrants further evaluation. Our work also demonstrates the importance of performing large, multi-institutional, prospective studies to validate biomarkers. We also discuss lessons learned in assembling such studies.

8.
BMC Cancer ; 22(1): 60, 2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35027038

ABSTRACT

BACKGROUND: High-dose methotrexate (HD-MTX) has broad use in the treatment of central nervous system (CNS) malignancies but confers significant toxicity without inpatient hydration and monitoring. Glucarpidase is a bacterial recombinant enzyme dosed at 50 units (u)/kg, resulting in rapid systemic MTX clearance. The aim of this study was to demonstrate feasibility of low-dose glucarpidase to facilitate MTX clearance in patients with CNS lymphoma (CNSL). METHODS: Eight CNSL patients received HD-MTX 3 or 6 g/m2 and glucarpidase 2000 or 1000u 24 h later. Treatments repeated every 2 weeks up to 8 cycles. RESULTS: Fifty-five treatments were administered. Glucarpidase 2000u yielded > 95% reduction in plasma MTX within 15 min following 33/34 doses (97.1%) and glucarpidase 1000u yielded > 95% reduction following 15/20 doses (75%). Anti-glucarpidase antibodies developed in 4 patients and were associated with MTX rebound. In CSF, glucarpidase was not detected and MTX levels remained cytotoxic after 1 (3299.5 nmol/L, n = 8) and 6 h (1254.7 nmol/L, n = 7). Treatment was safe and well-tolerated. Radiographic responses in 6 of 8 patients (75%) were as expected following MTX-based therapy. CONCLUSIONS: This study demonstrates feasibility of planned-use low-dose glucarpidase for MTX clearance and supports the hypothesis that glucarpidase does not impact MTX efficacy in the CNS. CLINICAL TRIAL REGISTRATION: NCT03684980 (Registration date 26/09/2018).


Subject(s)
Antineoplastic Agents , Central Nervous System Neoplasms , Lymphoma , Methotrexate , gamma-Glutamyl Hydrolase , Aged , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , Central Nervous System Neoplasms/drug therapy , Central Nervous System Neoplasms/mortality , Female , Humans , Lymphoma/drug therapy , Lymphoma/mortality , Male , Methotrexate/administration & dosage , Methotrexate/adverse effects , Methotrexate/therapeutic use , Middle Aged , Recombinant Proteins/administration & dosage , Recombinant Proteins/adverse effects , Recombinant Proteins/therapeutic use , gamma-Glutamyl Hydrolase/administration & dosage , gamma-Glutamyl Hydrolase/adverse effects , gamma-Glutamyl Hydrolase/therapeutic use
9.
Adv Drug Deliv Rev ; 181: 114082, 2022 02.
Article in English | MEDLINE | ID: mdl-34923029

ABSTRACT

Glioblastoma (GBM) is a malignant and aggressive brain tumor with a median survival of ∼15 months. Resistance to treatment arises from the extensive cellular and molecular heterogeneity in the three major components: glioma tumor cells, glioma stem cells, and tumor-associated microglia and macrophages. Within this triad, there is a complex network of intrinsic and secreted factors that promote classic hallmarks of cancer, including angiogenesis, resistance to cell death, proliferation, and immune evasion. A regulatory node connecting these diverse pathways is at the posttranscriptional level as mRNAs encoding many of the key drivers contain adenine- and uridine rich elements (ARE) in the 3' untranslated region. Human antigen R (HuR) binds to ARE-bearing mRNAs and is a major positive regulator at this level. This review focuses on basic concepts of ARE-mediated RNA regulation and how targeting HuR with small molecule inhibitors represents a plausible strategy for a multi-pronged therapeutic attack on GBM.


Subject(s)
Adenine/metabolism , Brain Neoplasms/pathology , ELAV-Like Protein 1/metabolism , Glioblastoma/pathology , Uridine/metabolism , Humans , Neovascularization, Pathologic , RNA Interference/physiology , RNA, Messenger/metabolism
10.
Glia ; 70(1): 155-172, 2022 01.
Article in English | MEDLINE | ID: mdl-34533864

ABSTRACT

Glial activation with the production of pro-inflammatory mediators is a major driver of disease progression in neurological processes ranging from acute traumatic injury to chronic neurodegenerative diseases such as amyotrophic lateral sclerosis and Alzheimer's disease. Posttranscriptional regulation is a major gateway for glial activation as many mRNAs encoding pro-inflammatory mediators contain adenine- and uridine-rich elements (ARE) in the 3' untranslated region which govern their expression. We have previously shown that HuR, an RNA regulator that binds to AREs, plays a major positive role in regulating inflammatory cytokine production in glia. HuR is predominantly nuclear in localization but translocates to the cytoplasm to exert a positive regulatory effect on RNA stability and translational efficiency. Homodimerization of HuR is necessary for translocation and we have developed a small molecule inhibitor, SRI-42127, that blocks this process. Here we show that SRI-42127 suppressed HuR translocation in LPS-activated glia in vitro and in vivo and significantly attenuated the production of pro-inflammatory mediators including IL1ß, IL-6, TNF-α, iNOS, CXCL1, and CCL2. Cytokines typically associated with anti-inflammatory effects including TGF-ß1, IL-10, YM1, and Arg1 were either unaffected or minimally affected. SRI-42127 suppressed microglial activation in vivo and attenuated the recruitment/chemotaxis of neutrophils and monocytes. RNA kinetic studies and luciferase studies indicated that SRI-42127 has inhibitory effects both on mRNA stability and gene promoter activation. In summary, our findings underscore HuR's critical role in promoting glial activation and the potential for SRI-42127 and other HuR inhibitors for treating neurological diseases driven by this activation.


Subject(s)
ELAV-Like Protein 1 , Lipopolysaccharides , 3' Untranslated Regions , ELAV Proteins/genetics , ELAV Proteins/metabolism , ELAV-Like Protein 1/genetics , Humans , Kinetics , Lipopolysaccharides/toxicity , Neuroinflammatory Diseases
11.
Neuro Oncol ; 24(1): 64-77, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34383057

ABSTRACT

BACKGROUND: Response to targeted therapy varies between patients for largely unknown reasons. Here, we developed and applied an integrative platform using mass spectrometry imaging (MSI), phosphoproteomics, and multiplexed tissue imaging for mapping drug distribution, target engagement, and adaptive response to gain insights into heterogeneous response to therapy. METHODS: Patient-derived xenograft (PDX) lines of glioblastoma were treated with adavosertib, a Wee1 inhibitor, and tissue drug distribution was measured with MALDI-MSI. Phosphoproteomics was measured in the same tumors to identify biomarkers of drug target engagement and cellular adaptive response. Multiplexed tissue imaging was performed on sister sections to evaluate spatial co-localization of drug and cellular response. The integrated platform was then applied on clinical specimens from glioblastoma patients enrolled in the phase 1 clinical trial. RESULTS: PDX tumors exposed to different doses of adavosertib revealed intra- and inter-tumoral heterogeneity of drug distribution and integration of the heterogeneous drug distribution with phosphoproteomics and multiplexed tissue imaging revealed new markers of molecular response to adavosertib. Analysis of paired clinical specimens from patients enrolled in the phase 1 clinical trial informed the translational potential of the identified biomarkers in studying patient's response to adavosertib. CONCLUSIONS: The multimodal platform identified a signature of drug efficacy and patient-specific adaptive responses applicable to preclinical and clinical drug development. The information generated by the approach may inform mechanisms of success and failure in future early phase clinical trials, providing information for optimizing clinical trial design and guiding future application into clinical practice.


Subject(s)
Glioblastoma , Pharmaceutical Preparations , Glioblastoma/diagnostic imaging , Glioblastoma/drug therapy , Humans
12.
Cancer Res ; 81(8): 2220-2233, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33602784

ABSTRACT

The development of novel therapeutics that exploit alterations in the activation state of key cellular signaling pathways due to mutations in upstream regulators has generated the field of personalized medicine. These first-generation efforts have focused on actionable mutations identified by deep sequencing of large numbers of tumor samples. We propose that a second-generation opportunity exists by exploiting key downstream "nodes of control" that contribute to oncogenesis and are inappropriately activated due to loss of upstream regulation and microenvironmental influences. The RNA-binding protein HuR represents such a node. Because HuR functionality in cancer cells is dependent on HuR dimerization and its nuclear/cytoplasmic shuttling, we developed a new class of molecules targeting HuR protein dimerization. A structure-activity relationship algorithm enabled development of inhibitors of HuR multimer formation that were soluble, had micromolar activity, and penetrated the blood-brain barrier. These inhibitors were evaluated for activity validation and specificity in a robust cell-based assay of HuR dimerization. SRI-42127, a molecule that met these criteria, inhibited HuR multimer formation across primary patient-derived glioblastoma xenolines (PDGx), leading to arrest of proliferation, induction of apoptosis, and inhibition of colony formation. SRI-42127 had favorable attributes with central nervous system penetration and inhibited tumor growth in mouse models. RNA and protein analysis of SRI-42127-treated PDGx xenolines across glioblastoma molecular subtypes confirmed attenuation of targets upregulated by HuR. These results highlight how focusing on key attributes of HuR that contribute to cancer progression, namely cytoplasmic localization and multimerization, has led to the development of a novel, highly effective inhibitor. SIGNIFICANCE: These findings utilize a cell-based mechanism of action assay with a structure-activity relationship compound development pathway to discover inhibitors that target HuR dimerization, a mechanism required for cancer promotion.


Subject(s)
Carcinogenesis/drug effects , ELAV-Like Protein 1/chemistry , Protein Multimerization/drug effects , Algorithms , Animals , Apoptosis/drug effects , Blood-Brain Barrier , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , ELAV-Like Protein 1/metabolism , ELAV-Like Protein 1/physiology , Glioblastoma/drug therapy , Glioblastoma/metabolism , Humans , Mice , Mice, Nude , Precision Medicine , Signal Transduction/drug effects , Structure-Activity Relationship , Tumor Stem Cell Assay , Up-Regulation
13.
Cancers (Basel) ; 12(10)2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33096700

ABSTRACT

Homotypic and heterotypic cell fusions via permanent membrane fusions and temporal tunneling nanotube formations in the glioma microenvironment were recently documented in vitro and in vivo and mediate glioma survival, plasticity, and recurrence. Chronic inflammation, a hypoxic environment, aberrant mitochondrial function, and ER stress due to unfolded protein accumulation upregulate cell fusion events, which leads to tumor heterogeneity and represents an adaptive mechanism to promote tumor cell survival and plasticity in cytotoxic, nutrient-deprived, mechanically stressed, and inflammatory microenvironments. Cell fusion is a multistep process, which consists of the activation of the cellular stress response, autophagy formation, rearrangement of cytoskeletal architecture in the areas of cell-to-cell contacts, and the expression of proinflammatory cytokines and fusogenic proteins. The mRNA-binding protein of ELAV-family HuR is a critical node, which orchestrates the stress response, autophagy formation, cytoskeletal architecture, and the expression of proinflammatory cytokines and fusogenic proteins. HuR is overexpressed in gliomas and is associated with poor prognosis and treatment resistance. Our review provides a link between the HuR role in the regulation of cell fusion and tunneling nanotube formations in the glioma microenvironment and the potential suppression of these processes by different classes of HuR inhibitors.

14.
Nat Commun ; 11(1): 4660, 2020 09 16.
Article in English | MEDLINE | ID: mdl-32938908

ABSTRACT

Intratumor spatial heterogeneity facilitates therapeutic resistance in glioblastoma (GBM). Nonetheless, understanding of GBM heterogeneity is largely limited to the surgically resectable tumor core lesion while the seeds for recurrence reside in the unresectable tumor edge. In this study, stratification of GBM to core and edge demonstrates clinically relevant surgical sequelae. We establish regionally derived models of GBM edge and core that retain their spatial identity in a cell autonomous manner. Upon xenotransplantation, edge-derived cells show a higher capacity for infiltrative growth, while core cells demonstrate core lesions with greater therapy resistance. Investigation of intercellular signaling between these two tumor populations uncovers the paracrine crosstalk from tumor core that promotes malignancy and therapy resistance of edge cells. These phenotypic alterations are initiated by HDAC1 in GBM core cells which subsequently affect edge cells by secreting the soluble form of CD109 protein. Our data reveal the role of intracellular communication between regionally different populations of GBM cells in tumor recurrence.


Subject(s)
Antigens, CD/metabolism , Brain Neoplasms/pathology , Glioblastoma/pathology , Histone Deacetylase 1/metabolism , Neoplasm Proteins/metabolism , Animals , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/mortality , Female , GPI-Linked Proteins/metabolism , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/mortality , Histone Deacetylase 1/antagonists & inhibitors , Histone Deacetylase 1/genetics , Histone Deacetylase 2/genetics , Histone Deacetylase 2/metabolism , Humans , Mice, SCID , Phenylbutyrates/pharmacology , Signal Transduction , Tumor Microenvironment , Xenograft Model Antitumor Assays
15.
Clin Cancer Res ; 26(7): 1586-1594, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32034072

ABSTRACT

PURPOSE: Rindopepimut is a vaccine targeting the tumor-specific EGF driver mutation, EGFRvIII. The ReACT study investigated whether the addition of rindopepimut to standard bevacizumab improved outcome for patients with relapsed, EGFRvIII-positive glioblastoma. PATIENTS AND METHODS: In this double-blind, randomized, phase II study (NCT01498328) conducted at 26 hospitals in the United States, bevacizumab-naïve patients with recurrent EGFRvIII-positive glioblastoma were randomized to receive rindopepimut or a control injection of keyhole limpet hemocyanin, each concurrent with bevacizumab. The primary endpoint was 6-month progression-free survival (PFS6) by central review with a one-sided significance of 0.2. RESULTS: Between May 2012 and 2014, 73 patients were randomized (36 rindopepimut, 37 control). Rindopepimut toxicity included transient, low-grade local reactions. As primary endpoint, PFS6 was 28% (10/36) for rindopepimut compared with 16% (6/37) for control (P = 0.12, one-sided). Secondary and exploratory endpoints also favored the rindopepimut group including a statistically significant survival advantage [HR, 0.53; 95% confidence interval (CI), 0.32-0.88; two-sided log-rank P = 0.01], a higher ORR [30% (9/30) vs. 18% (6/34; P = 0.38)], median duration of response [7.8 months (95% CI, 3.5-22.2) vs. 5.6 (95% CI, 3.7-7.4)], and ability to discontinue steroids for ≥6 months [33% (6/18) vs. 0% (0/19)]. Eighty percent of rindopepimut-treated patients achieved robust anti-EGFRvIII titers (≥1:12,800), which were associated with prolonged survival (HR = 0.17; 95% CI, 0.07-0.45; P < 0.0001). CONCLUSIONS: Our randomized trial supports the potential for targeted immunotherapy among patients with GBM, but the therapeutic benefit requires validation due to the small sample size and potential heterogeneity of bevacizumab response among recurrent patients with GBM.See related commentary by Wick and Wagener, p. 1535.


Subject(s)
Brain Neoplasms , Glioblastoma , Bevacizumab , Cancer Vaccines , Double-Blind Method , ErbB Receptors , Humans , Neoplasm Recurrence, Local , Patients , Vaccines, Subunit
16.
Cancers (Basel) ; 12(1)2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31906320

ABSTRACT

Neurofibromatosis type 1 (NF1) is an autosomal dominant tumor predisposition syndrome that affects children and adults. Individuals with NF1 are at high risk for central nervous system neoplasms including gliomas. The purpose of this review is to discuss the spectrum of intracranial gliomas arising in individuals with NF1 with a focus on recent preclinical and clinical data. In this review, possible mechanisms of gliomagenesis are discussed, including the contribution of different signaling pathways and tumor microenvironment. Furthermore, we discuss the recent notable advances in the developing therapeutic landscape for NF1-associated gliomas including clinical trials and collaborative efforts.

17.
Sci Rep ; 9(1): 10861, 2019 07 26.
Article in English | MEDLINE | ID: mdl-31350461

ABSTRACT

Methylmercury (MeHg) is an environmental neurotoxin with human exposure mainly from dietary intake of contaminated fish. Exposure to MeHg has been implicated in neurological damage, but research on its role in cancers, specifically glioma, is limited. In a glioma case-control study, we examined associations between toenail mercury (Hg) and glioma risk. We also examined genetic polymorphisms in 13 genes related to MeHg metabolism for association with glioma risk; genetic associations were also studied in the UK Biobank cohort. Median toenail Hg in cases and controls, respectively, was 0.066 µg/g and 0.069 µg/g (interquartile range (IQR): 0.032-0.161 and 0.031-0.150 µg/g). Toenail Hg was not found to be significantly associated with glioma risk (Odds Ratio: 1.02; 95% Confidence Interval: 0.91, 1.14; p = 0.70 in analysis for ordinal trend with increasing quartile of toenail MeHg). No genetic variant was statistically significant in both of the studies; one variant, rs11859163 (MMP2) had a combined p-value of 0.02 though it was no longer significant after adjustment for multiple testing (Bonferroni corrected p = 1). This study does not support the hypothesis that exposure to MeHg plays a role in the development of glioma at levels of exposure found in this study population.


Subject(s)
Brain Neoplasms/epidemiology , Glioma/epidemiology , Matrix Metalloproteinase 2/genetics , Mercury/analysis , Methylmercury Compounds/metabolism , Polymorphism, Single Nucleotide , Adolescent , Adult , Aged , Aged, 80 and over , Case-Control Studies , Dietary Exposure , Female , Humans , Male , Matrix Metalloproteinase 2/metabolism , Methylmercury Compounds/analysis , Middle Aged , Nails/chemistry , Prospective Studies , Risk Factors , United Kingdom/epidemiology , United States/epidemiology , Young Adult
18.
J Natl Compr Canc Netw ; 17(5.5): 579-582, 2019 05 01.
Article in English | MEDLINE | ID: mdl-31117044

ABSTRACT

Meningiomas represent a full spectrum of tumors that are the most common type of brain tumor in adults. Although most are benign, recent research has shown that the recurrence rate is high, especially for WHO grades 2 and 3, and overall survival is poor for these grades. Treatment is evolving, and recently sunitinib and bevacizumab have shown promise compared with historical treatments. However, more research is needed to identify better treatments for meningiomas. Treatment of brain metastases is another evolving field. Studies suggest that stereotactic radiosurgery is preferable to whole-brain radiation therapy and that immune checkpoint inhibitors and therapies targeted to the T790M mutation and ALK can improve outcomes in patients with non-small cell lung cancer and brain metastases.


Subject(s)
Central Nervous System Neoplasms/diagnosis , Central Nervous System Neoplasms/therapy , Central Nervous System Neoplasms/etiology , Combined Modality Therapy/methods , Disease Management , Humans , Neoplasm Grading , Neoplasm Staging , Practice Guidelines as Topic , Treatment Outcome
19.
PLoS Med ; 16(5): e1002810, 2019 05.
Article in English | MEDLINE | ID: mdl-31136584

ABSTRACT

BACKGROUND: Low-grade gliomas cause significant neurological morbidity by brain invasion. There is no universally accepted objective technique available for detection of enlargement of low-grade gliomas in the clinical setting; subjective evaluation by clinicians using visual comparison of longitudinal radiological studies is the gold standard. The aim of this study is to determine whether a computer-assisted diagnosis (CAD) method helps physicians detect earlier growth of low-grade gliomas. METHODS AND FINDINGS: We reviewed 165 patients diagnosed with grade 2 gliomas, seen at the University of Alabama at Birmingham clinics from 1 July 2017 to 14 May 2018. MRI scans were collected during the spring and summer of 2018. Fifty-six gliomas met the inclusion criteria, including 19 oligodendrogliomas, 26 astrocytomas, and 11 mixed gliomas in 30 males and 26 females with a mean age of 48 years and a range of follow-up of 150.2 months (difference between highest and lowest values). None received radiation therapy. We also studied 7 patients with an imaging abnormality without pathological diagnosis, who were clinically stable at the time of retrospective review (14 May 2018). This study compared growth detection by 7 physicians aided by the CAD method with retrospective clinical reports. The tumors of 63 patients (56 + 7) in 627 MRI scans were digitized, including 34 grade 2 gliomas with radiological progression and 22 radiologically stable grade 2 gliomas. The CAD method consisted of tumor segmentation, computing volumes, and pointing to growth by the online abrupt change-of-point method, which considers only past measurements. Independent scientists have evaluated the segmentation method. In 29 of the 34 patients with progression, the median time to growth detection was only 14 months for CAD compared to 44 months for current standard of care radiological evaluation (p < 0.001). Using CAD, accurate detection of tumor enlargement was possible with a median of only 57% change in the tumor volume as compared to a median of 174% change of volume necessary to diagnose tumor growth using standard of care clinical methods (p < 0.001). In the radiologically stable group, CAD facilitated growth detection in 13 out of 22 patients. CAD did not detect growth in the imaging abnormality group. The main limitation of this study was its retrospective design; nevertheless, the results depict the current state of a gold standard in clinical practice that allowed a significant increase in tumor volumes from baseline before detection. Such large increases in tumor volume would not be permitted in a prospective design. The number of glioma patients (n = 56) is a limitation; however, it is equivalent to the number of patients in phase II clinical trials. CONCLUSIONS: The current practice of visual comparison of longitudinal MRI scans is associated with significant delays in detecting growth of low-grade gliomas. Our findings support the idea that physicians aided by CAD detect growth at significantly smaller volumes than physicians using visual comparison alone. This study does not answer the questions whether to treat or not and which treatment modality is optimal. Nonetheless, early growth detection sets the stage for future clinical studies that address these questions and whether early therapeutic interventions prolong survival and improve quality of life.


Subject(s)
Brain Neoplasms/diagnostic imaging , Cell Proliferation , Glioma/diagnostic imaging , Magnetic Resonance Imaging , Brain Neoplasms/pathology , Female , Glioma/pathology , Humans , Longitudinal Studies , Male , Middle Aged , Neoplasm Grading , Neoplasm Invasiveness , Predictive Value of Tests , Retrospective Studies , Time Factors , Tumor Burden
20.
Neuro Oncol ; 21(1): 106-114, 2019 01 01.
Article in English | MEDLINE | ID: mdl-29982805

ABSTRACT

Background: Patients with glioblastoma (GBM) have a dismal prognosis. Nearly all will relapse with no clear standard of care for recurrent disease (rGBM). Approximately 50% of patients have tumors harboring epidermal growth factor receptor (EGFR) amplification. The antibody-drug conjugate depatuxizumab mafodotin (depatux-m) binds cells with EGFR amplification, is internalized, and releases a microtubule toxin, killing the cell. Here we report efficacy, safety and pharmacokinetics (PK) of depatux-m + temozolomide (TMZ) in patients with EGFR-amplified rGBM. Methods: M12-356 (NCT01800695) was an open-label study encompassing patients with newly diagnosed or rGBM across 3 treatment arms. Results are reported for adults with EGFR-amplified, measurable rGBM who received depatux-m (0.5-1.5 mg/kg) on days 1 and 15, and TMZ (150-200 mg/m2) on days 1-5 in a 28-day cycle. Patients were bevacizumab and nitrosourea naïve. Results: There were 60 patients, median age 56 years (range, 20-79). Fifty-nine patients previously received TMZ. Common adverse events (AEs) were blurred vision (63%), fatigue (38%), and photophobia (35%). Grades 3/4 AEs were split between ocular and non-ocular AEs, occurring in 22% of patients each. Systemic PK exposure of depatux-m was dose proportional. The objective response rate was 14.3%, the 6-month progression-free survival rate was 25.2%, and the 6-month overall survival rate was 69.1%. Conclusions: Depatux-m + TMZ displayed an AE profile similar to what was described previously. Antitumor activity in this TMZ-refractory population was encouraging. Continued study of depatux-m in patients with EGFR-amplified, newly diagnosed, or recurrent GBM is ongoing in 2 global, randomized trials (NCT02573324, NCT02343406).


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Brain Neoplasms/drug therapy , Gene Amplification , Glioblastoma/drug therapy , Neoplasm Recurrence, Local/drug therapy , Adult , Aged , Antibodies, Monoclonal, Humanized/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cohort Studies , ErbB Receptors/genetics , Female , Follow-Up Studies , Glioblastoma/genetics , Glioblastoma/pathology , Humans , International Agencies , Male , Maximum Tolerated Dose , Middle Aged , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Prognosis , Temozolomide/administration & dosage , Tissue Distribution , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL