Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacol Res ; 125(Pt B): 215-223, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28923543

ABSTRACT

Selective glucocorticoid receptor modulators (GRMs) promise to reduce adverse events of glucocorticoids while maintaining anti-inflammatory potency. The present study tested the anti-inflammatory activity of two novel non-steroidal GRMs (GRM1: BI 607812 BS, GRM2: BI 653048 BS*H3PO4) in comparison to prednisolone in a canine model of low dose endotoxemia. This study compared the anti-inflammatory and pharmacokinetic profile of escalating daily oral doses of GRM1 (1, 2.5, 5 and 10mg/kg) and GRM2 (0.1, 0.25 and 1mg/kg) with prednisolone (0.25 and 0.5mg/kg) and placebo after intravenous infusion of endotoxin (0.1µg/kg) to Beagle dogs. This was followed by a 14-day evaluation study of safety and pharmacokinetics. Endotoxin challenge increased TNF-α ∼2000-fold and interleukin-6 (IL-6) 100-fold. Prednisolone and both GRMs suppressed peak TNF-α and IL-6 by 71-82% as compared with placebo. The highest doses of GRM1 and GRM2 reduced the mean body temperature increase by ∼30%. The endotoxin-induced rise in plasma cortisol was strongly suppressed in all treatment groups. Pharmacokinetics of both GRMs were non-linear. Adverse effects of endotoxemia such as vomiting were mitigated by GRM2 and prednisolone, indicating an antiemetic effect. During the 14-day treatment period, the adverse event profile of both GRMs appeared to be similar to prednisolone. Both GRMs had anti-inflammatory effects comparable to prednisolone and showed good safety profiles. Compounds targeting the glucocorticoid receptor selectively may provide an alternative to traditional glucocorticoids in the treatment of inflammatory disease.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Benzamides/therapeutic use , Endotoxemia/drug therapy , Pyridines/therapeutic use , Pyrimidines/therapeutic use , Pyrroles/therapeutic use , Receptors, Glucocorticoid/metabolism , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Benzamides/pharmacokinetics , Benzamides/pharmacology , Bone and Bones/metabolism , C-Peptide/blood , Cytokines/blood , Disease Models, Animal , Dogs , Endotoxemia/blood , Insulin/blood , Male , Osteocalcin/blood , Pyridines/pharmacokinetics , Pyridines/pharmacology , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Pyrroles/pharmacokinetics , Pyrroles/pharmacology
2.
ACS Med Chem Lett ; 5(12): 1318-23, 2014 Dec 11.
Article in English | MEDLINE | ID: mdl-25516791

ABSTRACT

A series of nonsteroidal "dissociated" glucocorticoid receptor agonists was optimized for drug-like properties such as cytochrome P450 inhibition, metabolic stability, aqueous solubility, and hERG ion channel inhibition. This effort culminated in the identification of the clinical candidate compound ( R )-39.

3.
Bioorg Med Chem Lett ; 24(8): 1934-40, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24656565

ABSTRACT

Synthesis and structure-activity relationship (SAR) of a series of alkyl and cycloalkyl containing non-steroidal dissociated glucocorticoid receptor (GR) agonists is reported. This series of compounds was identified as part of an effort to replace the CF3 group in a scaffold represented by 1a. The study culminated in the identification of compound 14, a t-butyl containing derivative, which has shown potent activity for GR, selectivity against the progesterone receptor (PR) and the mineralocorticoid receptor (MR), in vitro anti-inflammatory activity in an IL-6 transrepression assay, and dissociation in a MMTV transactivation counter-screen. In a collagen-induced arthritis mouse model, 14 displayed prednisolone-like efficacy, and lower impact on body fat and free fatty acids than prednisolone at an equivalent anti-inflammatory dose.


Subject(s)
Drug Discovery , Glucocorticoids/chemical synthesis , Methanol/chemistry , Receptors, Glucocorticoid/agonists , Animals , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Arthritis/drug therapy , Binding Sites , Disease Models, Animal , Dose-Response Relationship, Drug , Glucocorticoids/chemistry , Glucocorticoids/pharmacology , Humans , Inhibitory Concentration 50 , Methanol/chemical synthesis , Methanol/pharmacology , Mice , Models, Molecular , Molecular Structure , Prednisolone/chemistry , Prednisolone/pharmacology , Protein Binding/drug effects , Rats , Rats, Sprague-Dawley
4.
J Med Chem ; 57(4): 1583-98, 2014 Feb 27.
Article in English | MEDLINE | ID: mdl-24506830

ABSTRACT

Synthesis and structure-activity relationship (SAR) of a series of nonsteroidal glucocorticoid receptor (GR) agonists are described. These compounds contain "diazaindole" moieties and display different transcriptional regulatory profiles in vitro and are considered "dissociated" between gene transrepression and transactivation. The lead optimization effort described in this article focused in particular on limiting the transactivation of genes which result in bone side effects and these were assessed in vitro in MG-63 osteosarcoma cells, leading to the identification of (R)-18 and (R)-21. These compounds maintained anti-inflammatory activity in vivo in collagen induced arthritis studies in mouse but had reduced effects on bone relevant parameters compared to the widely used synthetic glucocorticoid prednisolone 2 in vivo. To our knowledge, we are the first to report on selective glucocorticoid ligands with reduced bone loss in a preclinical in vivo model.


Subject(s)
Bone and Bones/drug effects , Receptors, Glucocorticoid/agonists , Animals , Cell Line, Tumor , Female , Humans , Magnetic Resonance Spectroscopy , Mice , Structure-Activity Relationship
5.
J Pharmacol Toxicol Methods ; 64(1): 89-96, 2011.
Article in English | MEDLINE | ID: mdl-21376127

ABSTRACT

INTRODUCTION: Long-term administration of non-selective matrix metalloproteinase (MMP) inhibitors, such as marimastat, in humans elicits musculoskeletal syndrome (MSS), a syndrome characterized by joint damage including pain, stiffness, and inflammation. This pathology is a significant obstacle to the clinical development of MMP inhibitors and in pre-clinical models MSS can be verified only after terminal histopathology. Consequently, we devised a longitudinal and functional readout of MSS in conscious rats treated with marimastat that was validated against terminal histological assessment. METHODS: MSS was induced by minipump infusion of marimastat (5-10mg/kg/day). In marimastat-treated or vehicle-control groups, three possible functional biomarkers were assessed: paw volume (PV), landing foot splay separation (LFSS), and rotarod performance (n=6 rats/group for each endpoint). RESULTS: Histologically, fibrosis scores in the synovium and ligament increased from 0 on Day 1 (D1) to 4.6±0.2 and 4.7±0.1, respectively, on D15; growth plate thickness was also elevated from 215.0±6.3µm (D1) to 253.3±8.0µm (D15). While neither PV nor LFSS were correlative with MSS histopathology, marimastat (10mg/kg/day) reduced rotarod performance from 180±0s (D0) to 135±30s (D9) using a constant speed protocol (10rpm, 180s) and from 180±0s (D0) to 96±6s (D6) employing a variable speed protocol (increasing from 5 to 25rpm over 180s). DISCUSSION: Results of the present study demonstrate that rotarod performance can be used as a predictive longitudinal, in vivo functional biomarker of MSS concomitant with histological evidence of joint damage to effectively facilitate compound selection during drug discovery. Moreover, for targets with a mechanistic risk for MSS, the model is also conducive to inclusion in secondary pharmacodynamic studies during lead optimization to identify the best (safest) compounds for advancement into clinical trials.


Subject(s)
Enzyme Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Matrix Metalloproteinase Inhibitors , Animals , Biomarkers, Pharmacological/analysis , Drug Evaluation, Preclinical/methods , Enzyme Inhibitors/toxicity , Hydroxamic Acids/toxicity , Joints/drug effects , Joints/pathology , Longitudinal Studies , Male , Musculoskeletal Diseases/chemically induced , Musculoskeletal Diseases/diagnosis , Musculoskeletal Diseases/pathology , Musculoskeletal System/drug effects , Musculoskeletal System/pathology , Rats , Rats, Sprague-Dawley
6.
J Med Chem ; 53(18): 6681-98, 2010 Sep 23.
Article in English | MEDLINE | ID: mdl-20735001

ABSTRACT

Syntheses and structure-activity relationships (SAR) of nonsteroidal glucocorticoid receptor (GR) agonists are described. These compounds contain azaindole moieties as A-ring mimetics and display various degrees of in vitro dissociation between gene transrepression and transactivation. Collagen induced arthritis studies in mouse have demonstrated that in vitro dissociated compounds (R)-16 and (R)-37 have steroid-like anti-inflammatory properties with improved metabolic side effect profiles, such as a reduced increase in body fat and serum insulin levels, compared to steroids.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Pyridines/chemical synthesis , Pyrroles/chemical synthesis , Receptors, Glucocorticoid/agonists , Steroids/chemistry , Adipose Tissue/drug effects , Animals , Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Aromatase/biosynthesis , Aromatase/genetics , Aromatase Inhibitors/pharmacology , Arthritis, Experimental/drug therapy , Biological Availability , Cells, Cultured , Enzyme Induction , Female , Humans , Hydrogen Bonding , Insulin/blood , Interleukin-1/pharmacology , Interleukin-6/antagonists & inhibitors , Interleukin-6/biosynthesis , Interleukin-6/genetics , Mice , Mice, Inbred BALB C , Models, Molecular , Pyridines/adverse effects , Pyridines/pharmacology , Pyrroles/adverse effects , Pyrroles/pharmacology , Rats , Rats, Sprague-Dawley , Stereoisomerism , Structure-Activity Relationship , Transcriptional Activation
SELECTION OF CITATIONS
SEARCH DETAIL