Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Chem ; 6(1): 166, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37580376

ABSTRACT

Metallic nanoparticles are widely explored for boosting light-matter coupling, optoelectronic response, and improving photocatalytic performance of two-dimensional (2D) materials. However, the target area is restricted to either top or bottom of the 2D flakes. Here, we introduce an approach for edge-specific nanoparticle decoration via light-assisted reduction of silver ions and merging of silver seeds. We observe arrays of the self-limited in size silver nanoparticles along tungsten diselenide WSe2 nanoribbon edges. The density of nanoparticles is tunable by adjusting the laser fluence. Scanning electron microscopy, atomic force microscopy, and Raman spectroscopy are used to investigate the size, distribution, and photo-response of the deposited plasmonic nanoparticles on the quasi-one-dimensional nanoribbons. We report an on-surface synthesis path for creating mixed-dimensional heterostructures and heterojunctions with potential applications in opto-electronics, plasmonics, and catalysis, offering improved light matter coupling, optoelectronics response, and photocatalytic performance of 2D materials.

2.
Polymers (Basel) ; 15(12)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37376240

ABSTRACT

Biobased and biodegradable polymers (BBDs) such as poly(3-hydroxy-butyrate), PHB, and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) are considered attractive alternatives to fossil-based plastic materials since they are more environmentally friendly. One major problem with these compounds is their high crystallinity and brittleness. In order to generate softer materials without using fossil-based plasticizers, the suitability of natural rubber (NR) as an impact modifier was investigated in PHBV blends. Mixtures with varying proportions of NR and PHBV were generated, and samples were prepared by mechanical mixing (roll mixer and/or internal mixer) and cured by radical C-C crosslinking. The obtained specimens were investigated with respect to their chemical and physical characteristics, applying a variety of different methods such as size exclusion chromatography, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermal analysis, XRD, and mechanical testing. Our results clearly indicate that NR-PHBV blends exhibit excellent material characteristics including high elasticity and durability. Additionally, biodegradability was tested by applying heterologously produced and purified depolymerases. pH shift assays and morphology analyses of the surface of depolymerase-treated NR-PHBV through electron scanning microscopy confirmed the enzymatic degradation of PHBV. Altogether, we prove that NR is highly suitable to substitute fossil-based plasticizers; NR-PHBV blends are biodegradable and, hence, should be considered as interesting materials for a great number of applications.

3.
J Allergy Clin Immunol Glob ; 1(4): 265-272, 2022 Nov.
Article in English | MEDLINE | ID: mdl-37779543

ABSTRACT

Background: Ragweed as an invasive species in Europe has become more important for allergy sufferers in the last decade. Because pollen fractions can be found in the respirable fraction of aerosols, they can generate severe disease progressions. Objective: To obtain information about the concentration and distribution of 1 of the main ragweed allergens Ambrosia artemisiifolia 1 in the air of Vienna, PM10 and PM2.5 fine dust filters were analyzed. Methods: Standard fine dust filters used for air quality monitoring were analyzed via ELISA and immunogold scanning electron microscopy. Results: Via ELISA it was possible to show that already at pollen season start in August a recognizably high A artemisiifolia 1 concentration can be found. In addition, the allergen concentration in the air stays comparatively high after the peak season has ended even when the pollen concentration drops to a moderate level. The immunogold electron microscopy investigation directly applied on filters shows that the allergen can be found on organic as well as on mixtures of organic and inorganic particles. A first semistatistical analysis of the labeled particle sizes indicates that a large number of the allergen carriers can be found within the smallest particle size range. Nevertheless, further investigations are needed to obtain enough particle counts for a significant statistical analysis. Conclusions: It was possible to show that reliable results can be obtained from ELISA and immunogold scanning electron microscopy directly applied on filters that are used in air quality monitoring sites. By adaptation of the used protocols, it should be possible to obtain respective information about further allergens.

4.
Proc Natl Acad Sci U S A ; 118(14)2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33785597

ABSTRACT

Electrodepositing insulating lithium peroxide (Li2O2) is the key process during discharge of aprotic Li-O2 batteries and determines rate, capacity, and reversibility. Current understanding states that the partition between surface adsorbed and dissolved lithium superoxide governs whether Li2O2 grows as a conformal surface film or larger particles, leading to low or high capacities, respectively. However, better understanding governing factors for Li2O2 packing density and capacity requires structural sensitive in situ metrologies. Here, we establish in situ small- and wide-angle X-ray scattering (SAXS/WAXS) as a suitable method to record the Li2O2 phase evolution with atomic to submicrometer resolution during cycling a custom-built in situ Li-O2 cell. Combined with sophisticated data analysis, SAXS allows retrieving rich quantitative structural information from complex multiphase systems. Surprisingly, we find that features are absent that would point at a Li2O2 surface film formed via two consecutive electron transfers, even in poorly solvating electrolytes thought to be prototypical for surface growth. All scattering data can be modeled by stacks of thin Li2O2 platelets potentially forming large toroidal particles. Li2O2 solution growth is further justified by rotating ring-disk electrode measurements and electron microscopy. Higher discharge overpotentials lead to smaller Li2O2 particles, but there is no transition to an electronically passivating, conformal Li2O2 coating. Hence, mass transport of reactive species rather than electronic transport through a Li2O2 film limits the discharge capacity. Provided that species mobilities and carbon surface areas are high, this allows for high discharge capacities even in weakly solvating electrolytes. The currently accepted Li-O2 reaction mechanism ought to be reconsidered.

5.
Micron ; 144: 103034, 2021 05.
Article in English | MEDLINE | ID: mdl-33621743

ABSTRACT

Nowadays "microplastics" (MPs) is an already well-known term and results of micro-sized particles found in consumer products or environments are regularly reported. However, studies of native MPs smaller than 1 µm, often referred to as nanoplastics (NPs), in analytically challenging environments are rare. In this study, a correlative approach between scanning electron microscopy and Raman microscopy is tested to meet the challenges of finding and identifying NPs in the 100 nm range in various environments, ranging from ideal (distilled water) to challenging (sea salt, human amniotic fluid). To test the viability of this approach in principle, standardized polystyrene beads (Ø 200 nm) are mixed into the various environments in different concentrations. Promising detection limits of 2 10-3 µg/L (distilled water), 20 µg/L (sea salt) and 200 µg/L (human amniotic fluid) are found. To test the approach in practices both sea salt and amniotic fluid are analysed for native NPs as well. Interestingly a nylon-NP was found in the amniotic fluid, maybe originating from the sampling device. However, the practical test reveals limitations, especially with regard to the reliable identification of unknown NPs by Raman microscopy, due to strong background signals from the environments. We conclude from this in combination with the excellent performance in distilled water that a combination of this approach with an advanced sample preparation technique would yield a powerful tool for the analysis of NPs in various environments.


Subject(s)
Environmental Pollutants/analysis , Microplastics/analysis , Microscopy, Electron, Scanning/methods , Nonlinear Optical Microscopy/methods , Amniotic Fluid/chemistry , Limit of Detection , Seawater/chemistry
6.
Materials (Basel) ; 13(11)2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32516994

ABSTRACT

Efficient capture of barium (Ba) from solution is a serious task in environmental protection and remediation. Herein, the capacity and the mechanism of Ba adsorption by natural and iron(III) oxide (FeO) modified allophane (ALO), beidellite (BEI) and zeolite (ZEO) were investigated by considering the effects of contact time, temperature, pH, Ba2+ concentration, adsorbent dosage, the presence of competitive ions and adsorption-desorption cycles (regenerability). Physicochemical and mineralogical properties of the adsorbents were characterized by XRD, FTIR, SEM with EDX and N2 physisorption techniques. The Ba2+ adsorption fitted to a pseudo-first-order reaction kinetics, where equilibrium conditions were reached within <30 min. BEI, ALO and ZEO with(out) FeO-modification yielded removal efficiencies for Ba2+ of up to 99.9%, 97% and 22% at optimum pH (pH 7.5-8.0). Adsorption isotherms fitted to the Langmuir model, which revealed the highest adsorption capacities for BEI and FeO-BEI (44.8 mg/g and 38.6 mg/g at 313 K). Preferential ion uptake followed in the order: Ba2+ > K+ > Ca2+ >> Mg2+ for all adsorbents; however, BEI and FeO-BEI showed the highest selectivity for Ba2+ among all materials tested. Barium removal from solution was governed by physical adsorption besides ion exchange, intercalation, surface complexation and precipitation, depending mainly on the absorbent type and operational conditions. BEI and FeO-BEI showed a high regenerability (>70-80% desorption efficiency after 5 cycles) and could be considered as efficient sorbent materials for wastewater clean-up.

7.
Sci Total Environ ; 718: 137140, 2020 May 20.
Article in English | MEDLINE | ID: mdl-32088488

ABSTRACT

Rapid deposition of chemical sediments, particularly calcium carbonate, is a widespread phenomenon in tunnel constructions, which can significantly disturb water draining. The removal of the scale deposits in the drainage setting is labor and cost intensive. Prediction or prevention of these unwanted scale deposits are challenging and require detailed knowledge on their site-specific source, formation mechanisms and environmental dependencies. This case study combines a mineralogical, (micro)structural, isotopic, microbiological, and hydrochemical approach to understand the formation of scale deposits in an Austrian motorway tunnel. Chemical and isotopic results revealed that all investigated solutions originate from a distinct local aquifer. High pH (11), indicative high alkaline element concentrations (Na 26 mg/l; K 67 mg/l), originated from concrete leaching, and a strong supersaturation in respect to calcite (SI > 1) are representative for the environmental setting of scaling type 1. This type is characterized by the formation of calcite, aragonite, and rarely documented dypingite (Mg5(CO3)4(OH)2*5H2O), and yields in a highly porous material showing minor indications of microbial presence. In contrast, scale deposits of type 2 are strongly microbially influenced, yielding dense and layered mineral deposits, typically consisting of calcite. The corresponding aqueous solution revealed elevated Mg concentration (38 mg/l) and a high molar Mg/Ca ratio (0.8). Scale deposits containing distinct aragonite precipitates next to calcite, mostly growing in pore spaces of the scale fabric, are accounted as type 3. Therein, dypingite is always growing on top of aragonite needles, indicative for prior CaCO3 precipitation. The composition of corresponding solutions shows the highest Mg/Ca ratio (1.1). Scale type 4 is characterized as a compact deposit consisting entirely of calcite. Its corresponding solution exhibits a molar Mg/Ca ratio of 0.6. From the obtained data sets a conceptual model was developed describing the distinct operative and (micro)environmental conditions responsible for the distinct diversity of scale deposits.

SELECTION OF CITATIONS
SEARCH DETAIL
...