Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Protein Sci ; 33(3): e4904, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38358126

ABSTRACT

UBE2T is an attractive target for drug development due to its linkage with several types of cancers. However, the druggability of ubiquitin-conjugating E2 (UBE2T) is low because of the lack of a deep and hydrophobic pocket capable of forming strong binding interactions with drug-like small molecules. Here, we performed fragment screening using 19 F-nuclear magnetic resonance (NMR) and validated the hits with 1 H-15 N-heteronuclear single quantum coherence (HSQC) experiment and X-ray crystallographic studies. The cocrystal structures obtained revealed the binding modes of the hit fragments and allowed for the characterization of the fragment-binding sites. Further screening of structural analogues resulted in the identification of a compound series with inhibitory effect on UBE2T activity. Our current study has identified two new binding pockets in UBE2T, which will be useful for the development of small molecules to regulate the function of this protein. In addition, the compounds identified in this study can serve as chemical starting points for the development of UBE2T modulators.


Subject(s)
Ubiquitin-Conjugating Enzymes , Ubiquitin , Ubiquitin-Conjugating Enzymes/metabolism , Binding Sites
2.
J Med Chem ; 65(2): 983-1007, 2022 01 27.
Article in English | MEDLINE | ID: mdl-34533957

ABSTRACT

Mitogen-activated protein kinase-interacting kinases 1 and 2 (MNK1/2) represent a central class of enzymes that are activated by extracellular signal-regulated kinase (ERK) or p38 mitogen-activated protein (MAP) kinases. MNK1 and MNK2 coordinate cellular signaling, control production of inflammatory chemokines, and regulate cell proliferation and survival. MNK1/2 are referred to as serine/threonine kinases as they phosphorylate serine or threonine residues on their substrates. Upon activation, MNK1/2 phosphorylate eukaryotic translation initiation factor 4E (eIF4E) at Ser209, which in turn initiates ribosome assembly and protein translation. Deleterious overexpression of MNK1/2 and/or eIF4E have been reported in several diseases including cancers, neurological disorders, autism, and inflammation. Recently, there have been intense efforts toward the development of potent and selective inhibitors of MNK1/2 in both academia and industry. Herein, we review the current understanding of the structural and biological aspects of MNK1/2 and provide an update of pharmacological inhibitors of MNK1/2 including candidates in clinical trials.


Subject(s)
Inflammation/drug therapy , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Neoplasms/drug therapy , Nervous System Diseases/drug therapy , Protein Kinase Inhibitors/therapeutic use , Protein Serine-Threonine Kinases/antagonists & inhibitors , Animals , Humans , Inflammation/enzymology , Neoplasms/enzymology , Nervous System Diseases/enzymology
3.
Sci Adv ; 7(18)2021 04.
Article in English | MEDLINE | ID: mdl-33931443

ABSTRACT

Molecular profiling of the most aggressive brain tumor glioblastoma (GBM) on the basis of gene expression, DNA methylation, and genomic variations advances both cancer research and clinical diagnosis. The enhancer architectures and regulatory circuitries governing tumor-intrinsic transcriptional diversity and subtype identity are still elusive. Here, by mapping H3K27ac deposition, we analyze the active regulatory landscapes across 95 GBM biopsies, 12 normal brain tissues, and 38 cell line counterparts. Analyses of differentially regulated enhancers and super-enhancers uncovered previously unrecognized layers of intertumor heterogeneity. Integrative analysis of variant enhancer loci and transcriptome identified topographies of transcriptional enhancers and core regulatory circuitries in four molecular subtypes of primary tumors: AC1-mesenchymal, AC1-classical, AC2-proneural, and AC3-proneural. Moreover, this study reveals core oncogenic dependency on super-enhancer-driven transcriptional factors, long noncoding RNAs, and druggable targets in GBM. Through profiling of transcriptional enhancers, we provide clinically relevant insights into molecular classification, pathogenesis, and therapeutic intervention of GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Chromatin/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Glioblastoma/pathology , Humans
4.
Oncogene ; 40(10): 1851-1867, 2021 03.
Article in English | MEDLINE | ID: mdl-33564073

ABSTRACT

Soft tissue sarcoma (STS) is a heterogeneous disease that arises from connective tissues. Clinical outcome of patients with advanced tumors especially de-differentiated liposarcoma and uterine leiomyosarcoma remains unsatisfactory, despite intensive treatment regimens including maximal surgical resection, radiation, and chemotherapy. MAP kinase-interacting serine/threonine-protein kinase 1 and 2 (MNK1/2) have been shown to contribute to oncogenic translation via phosphorylation of eukaryotic translation initiation factor 4E (eIF4E). However, little is known about the role of MNK1/2 and their downstream targets in STS. In this study, we show that depletion of either MNK1 or MNK2 suppresses cell viability, anchorage-independent growth, and tumorigenicity of STS cells. We also identify a compelling antiproliferative efficacy of a novel, selective MNK inhibitor ETC-168. Cellular responsiveness of STS cells to ETC-168 correlates positively with that of phosphorylated ribosomal protein S6 (RPS6). Mirroring MNK1/2 silencing, ETC-168 treatment strongly blocks eIF4E phosphorylation and represses expression of sarcoma-driving onco-proteins including E2F1, FOXM1, and WEE1. Moreover, combination of ETC-168 and MCL1 inhibitor S63845 exerts a synergistic antiproliferative activity against STS cells. In summary, our study reveals crucial roles of MNK1/2 and their downstream targets in STS tumorigenesis. Our data encourage further clinical translation of MNK inhibitors for STS treatment.


Subject(s)
Cell Cycle Proteins/genetics , E2F1 Transcription Factor/genetics , Forkhead Box Protein M1/genetics , Intracellular Signaling Peptides and Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , Sarcoma/drug therapy , Carcinogenesis/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Enzyme Inhibitors/pharmacology , Gene Expression Regulation, Neoplastic , Humans , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Phosphorylation/drug effects , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrimidines/pharmacology , Sarcoma/genetics , Sarcoma/pathology , Thiophenes/pharmacology
5.
Nature ; 584(7820): 252-256, 2020 08.
Article in English | MEDLINE | ID: mdl-32760004

ABSTRACT

A fundamental challenge in developing treatments for autism spectrum disorders is the heterogeneity of the condition. More than one hundred genetic mutations confer high risk for autism, with each individual mutation accounting for only a small fraction of cases1-3. Subsets of risk genes can be grouped into functionally related pathways, most prominently those involving synaptic proteins, translational regulation, and chromatin modifications. To attempt to minimize this genetic complexity, recent therapeutic strategies have focused on the neuropeptides oxytocin and vasopressin4-6, which regulate aspects of social behaviour in mammals7. However, it is unclear whether genetic risk factors predispose individuals to autism as a result of modifications to oxytocinergic signalling. Here we report that an autism-associated mutation in the synaptic adhesion molecule Nlgn3 results in impaired oxytocin signalling in dopaminergic neurons and in altered behavioural responses to social novelty tests in mice. Notably, loss of Nlgn3 is accompanied by a disruption of translation homeostasis in the ventral tegmental area. Treatment of Nlgn3-knockout mice with a new, highly specific, brain-penetrant inhibitor of MAP kinase-interacting kinases resets the translation of mRNA and restores oxytocin signalling and social novelty responses. Thus, this work identifies a convergence between the genetic autism risk factor Nlgn3, regulation of translation, and oxytocinergic signalling. Focusing on such common core plasticity elements might provide a pragmatic approach to overcoming the heterogeneity of autism. Ultimately, this would enable mechanism-based stratification of patient populations to increase the success of therapeutic interventions.


Subject(s)
Autistic Disorder/metabolism , Autistic Disorder/psychology , Disease Models, Animal , Oxytocin/metabolism , Social Behavior , Animals , Cell Adhesion Molecules, Neuronal/deficiency , Cell Adhesion Molecules, Neuronal/genetics , Eukaryotic Initiation Factor-4E/metabolism , Male , Membrane Proteins/deficiency , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitogen-Activated Protein Kinases/metabolism , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/genetics , Neurons/drug effects , Neurons/metabolism , Phosphorylation/drug effects , Protein Biosynthesis/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction/drug effects , Ventral Tegmental Area/cytology , Ventral Tegmental Area/drug effects
6.
J Med Chem ; 63(2): 621-637, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31910010

ABSTRACT

Dysregulation of translation initiation factor 4E (eIF4E) activity occurs in various cancers. Mitogen-activated protein kinase (MAPK) interacting kinases 1 and 2 (MNK1 and MNK2) play a fundamental role in activation of eIF4E. Structure-activity relationship-driven expansion of a fragment hit led to discovery of dual MNK1 and MNK2 inhibitors based on a novel pyridine-benzamide scaffold. The compounds possess promising in vitro and in vivo pharmacokinetic profiles and show potent on target inhibition of eIF4E phosphorylation in cells.


Subject(s)
Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Cell Line, Tumor , Crystallography, X-Ray , Drug Discovery , Eukaryotic Initiation Factor-4E/antagonists & inhibitors , Humans , Models, Molecular , Phosphorylation , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Structure-Activity Relationship
7.
J Med Chem ; 61(10): 4348-4369, 2018 05 24.
Article in English | MEDLINE | ID: mdl-29683667

ABSTRACT

Chronic myeloid leukemia (CML) is a myeloproliferative disease caused by bcr-abl1, a constitutively active tyrosine kinase fusion gene responsible for an abnormal proliferation of leukemic stem cells (LSCs). Inhibition of BCR-ABL1 kinase activity offers long-term relief to CML patients. However, for a proportion of them, BCR-ABL1 inhibition will become ineffective at treating the disease, and CML will progress to blast crisis (BC) CML with poor prognosis. BC-CML is often associated with excessive phosphorylated eukaryotic translation initiation factor 4E (eIF4E), which renders LSCs capable of proliferating via self-renewal, oblivious to BCR-ABL1 inhibition. In vivo, eIF4E is exclusively phosphorylated on Ser209 by MNK1/2. Consequently, a selective inhibitor of MNK1/2 should reduce the level of phosphorylated eIF4E and re-sensitize LSCs to BCR-ABL1 inhibition, thus hindering the proliferation of BC LSCs. We report herein the structure-activity relationships and pharmacokinetic properties of a selective MNK1/2 inhibitor clinical candidate, ETC-206, which in combination with dasatinib prevents BC-CML LSC self-renewal in vitro and enhances dasatinib antitumor activity in vivo.


Subject(s)
Blast Crisis/drug therapy , Cell Proliferation , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Animals , Blast Crisis/pathology , Female , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Mice , Mice, SCID , Models, Molecular , Molecular Structure , Protein Conformation , Protein Kinase Inhibitors/chemistry , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
8.
Structure ; 26(4): 555-564.e3, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29526431

ABSTRACT

Zika virus (ZIKV) infection has become a global public health concern. The viral NS2B-NS3 protease is an attractive antiviral target because of its role in maturation of viral non-structural proteins. Substrate-derived protease inhibitors have been investigated, but it remains challenging to develop them into drugs. Small-molecule inhibitors are of great interest in antiviral drug development. Here we report the structure and dynamics of ZIKV NS2B-NS3 protease covalently bound to a small-molecule inhibitor. Our crystallographic and NMR studies demonstrate that the inhibitor further stabilizes the closed conformation of ZIKV protease. Upon hydrolysis in situ into two fragments, the benzoyl group of the inhibitor forms a covalent bond with the side chain of catalytic residue S135, whereas the second fragment exhibits no obvious molecular interactions with the protease. This study provides a detailed mechanism of action for a covalent inhibitor, which will guide further development of ZIKV protease inhibitors.


Subject(s)
Antiviral Agents/chemistry , Protease Inhibitors/chemistry , Small Molecule Libraries/chemistry , Viral Nonstructural Proteins/chemistry , Zika Virus/chemistry , Amino Acid Sequence , Antiviral Agents/metabolism , Binding Sites , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Kinetics , Models, Molecular , Protease Inhibitors/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , RNA Helicases/antagonists & inhibitors , RNA Helicases/chemistry , RNA Helicases/genetics , RNA Helicases/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Serine/chemistry , Serine/metabolism , Serine Endopeptidases/chemistry , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Small Molecule Libraries/metabolism , Substrate Specificity , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Zika Virus/enzymology , Zika Virus/genetics
10.
ACS Omega ; 2(11): 7881-7891, 2017 Nov 30.
Article in English | MEDLINE | ID: mdl-30023565

ABSTRACT

Overexpression of the eukaryotic initiation factor 4E (eIF4E) is linked to a variety of cancers. Both mitogen-activated protein kinases-interacting kinases 1 and 2 (Mnk1/2) activate the oncogene eIF4E through posttranslational modification (phosphorylating it at the conserved Ser209). Inhibition of Mnk prevents eIF4E phosphorylation, making the Mnk-eIF4E axis a potential therapeutic target for oncology. Recently, the design and synthesis of a series of novel potent compounds inhibiting the Mnk1/2 kinases were carried out in-house. Here, we describe computational models of the interactions between Mnk1/2 kinases and these inhibitors. Molecular modeling combined with free energy calculations show that these compounds bind to the inactive forms of the kinases. All compounds adopt similar conformations in the catalytic sites of both kinases, stabilized by hydrogen bonds with the hinge regions and with the catalytic Lys78 (Mnk1) and Lys113 (Mnk2). These hydrogen bond interactions clearly play a critical role in determining the conformational stability and potency of the compounds. We also find that van der Waals interactions with an allosteric pocket are key to their binding and potency. Two distinct hydration sites that appear to further stabilize the ligand binding/interactions were observed. Critically, the inclusion of explicit water molecules in the calculations results in improving the agreement between calculated and experimental binding free energies.

11.
J Med Chem ; 59(7): 3063-78, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-27011159

ABSTRACT

Clinically used BCR-ABL1 inhibitors for the treatment of chronic myeloid leukemia do not eliminate leukemic stem cells (LSC). It has been shown that MNK1 and 2 inhibitors prevent phosphorylation of eIF4E and eliminate the self-renewal capacity of LSCs. Herein, we describe the identification of novel dual MNK1 and 2 and BCR-ABL1 inhibitors, starting from the known kinase inhibitor 2. Initial structure-activity relationship studies resulted in compound 27 with loss of BCR-ABL1 inhibition. Further modification led to orally bioavailable dual MNK1 and 2 and BCR-ABL1 inhibitors 53 and 54, which are efficacious in a mouse xenograft model and also reduce the level of phosphorylated eukaryotic translation initiation factor 4E in the tumor tissues. Kinase selectivity of these compounds is also presented.


Subject(s)
Fusion Proteins, bcr-abl/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Biological Availability , Chemistry Techniques, Synthetic , Dose-Response Relationship, Drug , Eukaryotic Initiation Factor-4E/metabolism , Female , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Mice, SCID , Molecular Targeted Therapy/methods , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Xenograft Model Antitumor Assays/methods
12.
Drug Des Devel Ther ; 9: 6389-99, 2015.
Article in English | MEDLINE | ID: mdl-26677315

ABSTRACT

Dengue virus (DENV) protease is an attractive target for drug development; however, no compounds have reached clinical development to date. In this study, we utilized a potent West Nile virus protease inhibitor of the pyrazole ester derivative class as a chemical starting point for DENV protease drug development. Compound potency and selectivity for DENV protease were improved through structure-guided small molecule optimization, and protease-inhibitor binding interactions were validated biophysically using nuclear magnetic resonance. Our work strongly suggests that this class of compounds inhibits flavivirus protease through targeted covalent modification of active site serine, contrary to an allosteric binding mechanism as previously described.


Subject(s)
Antiviral Agents/pharmacology , Dengue Virus/drug effects , Dengue Virus/enzymology , Protease Inhibitors/pharmacology , Serine Endopeptidases/metabolism , Small Molecule Libraries/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/chemistry , Catalytic Domain/drug effects , Dose-Response Relationship, Drug , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Protease Inhibitors/chemistry , Small Molecule Libraries/chemistry , Structure-Activity Relationship , Viral Nonstructural Proteins/metabolism
13.
Biochemistry ; 54(1): 32-46, 2015 Jan 13.
Article in English | MEDLINE | ID: mdl-25431995

ABSTRACT

Mitogen-activated protein kinases-interacting kinase 1 and 2 (Mnk1/2) activate the oncogene eukaryotic initiation factor 4E (eIF4E) by phosphorylation. High level of phosphorylated eIF4E is associated with various types of cancers. Inhibition of Mnk prevents eIF4E phosphorylation, making them potential therapeutic targets for cancer. Recently, we have designed and synthesized a series of novel imidazopyridine and imidazopyrazine derivatives that inhibit Mnk1/2 kinases with a potency in the nanomolar to micromolar range. In the current work we model the inhibition of Mnk kinase activity by these inhibitors using various computational approaches. Combining homology modeling, docking, molecular dynamics simulations, and free energy calculations, we find that all compounds bind similarly to the active sites of both kinases with their imidazopyridine and imidazopyrazine cores anchored to the hinge regions of the kinases through hydrogen bonds. In addition, hydrogen bond interactions between the inhibitors and the catalytic Lys78 (Mnk1), Lys113 (Mnk2) and Ser131 (Mnk1), Ser166 (Mnk2) appear to be important for the potency and stability of the bound conformations of the inhibitors. The computed binding free energies (ΔGPred) of these inhibitors are in accord with experimental bioactivity data (pIC50) with correlation coefficients (r(2)) of 0.70 and 0.68 for Mnk1 and Mnk2 respectively. van der Waals energies and entropic effects appear to dominate the binding free energy (ΔGPred) for each Mnk-inhibitor complex studied. The models suggest that the activities of these small molecule inhibitors arise from interactions with multiple residues in the active sites, particularly with the hydrophobic residues.


Subject(s)
Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/metabolism , Protein Kinase Inhibitors/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Amino Acid Sequence , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Molecular Sequence Data , Protein Binding/physiology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/chemistry , Protein Structure, Secondary
14.
ACS Med Chem Lett ; 5(7): 760-5, 2014 Jul 10.
Article in English | MEDLINE | ID: mdl-25050161

ABSTRACT

A series of 4-bicyclic heteroaryl 1,2,3,4-tetrahydroisoquinoline inhibitors of the serotonin transporter (SERT), norepinephrine transporter (NET), and dopamine transporter (DAT) was discovered. The synthesis and structure-activity relationship (SAR) of these triple reuptake inhibitors (TRIs) will be discussed. Compound 10i (AMR-2), a very potent inhibitor of SERT, NET, and DAT, showed efficacy in the rat forced-swim and mouse tail suspension models with minimum effective doses of 0.3 and 1 mg/kg (po), respectively. At efficacious doses in these assays, 10i exhibited substantial occupancy levels at the three transporters in both rat and mouse brain. The study of the metabolism of 10i revealed the formation of a significant active metabolite, compound 13.

15.
Biochemistry ; 52(41): 7339-49, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-24083777

ABSTRACT

ADP ribosylation factor nucleotide site opener (ARNO) as a guanine nucleotide exchange factor (GEF) activates small GTPases called ADP ribosylation factors (Arfs), which function as molecular switches and regulate a variety of cell biological events. ARNO directly interacts with the transmembrane a2-subunit isoform of the proton-pumping vacuolar ATPase in an acidification-dependent manner, and this interaction plays a crucial role in the regulation of the protein degradation pathway. A recent study reported specific interactions of a2N with the ARNO375-400 peptide corresponding to the polybasic (PB) domain of ARNO, which is a crucial regulatory element in the autoregulation and modulation of Arf-GEF activity. Interestingly, phosphorylation of Ser392 completely abolishes this interaction, and the experimental structure shows significant structural rearrangements. To investigate the effect of Ser392 phosphorylation on the structure and dynamics of the ARNO375-400 peptide, we employed all atom molecular dynamics (MD) simulations of the phosphorylated and unphosphorylated PB domain of the ARNO protein. A Hamiltonian-based replica exchange method called biasing potential replica exchange MD was used to enhance conformational sampling. Simulations predicted that the isolated PB domain is highly flexible, with the C-terminal region of the unphosphorylated state being unstable. In contrast, Ser392 phosphorylation increases the overall stability of the peptide. In agreement with experimental results, our simulations further support the hypothesis that phosphorylation induces disorder to order transitions and provide new insights into the structural dynamics of the PB domain. Phosphorylation of Ser392 appears to stabilize the C-terminal α-helix via formation of salt bridges between phospho-Ser392 and Arg390, Lys395, and Lys396.


Subject(s)
GTPase-Activating Proteins/chemistry , GTPase-Activating Proteins/metabolism , Serine/metabolism , Amino Acid Motifs , GTPase-Activating Proteins/genetics , HeLa Cells , Humans , Models, Molecular , Molecular Docking Simulation , Phosphorylation , Protein Structure, Secondary , Protein Structure, Tertiary , Serine/chemistry
16.
Proc Natl Acad Sci U S A ; 110(25): E2298-307, 2013 Jun 18.
Article in English | MEDLINE | ID: mdl-23737503

ABSTRACT

Chronic myeloid leukemia responds well to therapy targeting the oncogenic fusion protein BCR-ABL1 in chronic phase, but is resistant to treatment after it progresses to blast crisis (BC). BC is characterized by elevated ß-catenin signaling in granulocyte macrophage progenitors (GMPs), which enables this population to function as leukemia stem cells (LSCs) and act as a reservoir for resistance. Because normal hematopoietic stem cells (HSCs) and LSCs depend on ß-catenin signaling for self-renewal, strategies to specifically target BC will require identification of drugable factors capable of distinguishing between self-renewal in BC LSCs and normal HSCs. Here, we show that the MAP kinase interacting serine/threonine kinase (MNK)-eukaryotic translation initiation factor 4E (eIF4E) axis is overexpressed in BC GMPs but not normal HSCs, and that MNK kinase-dependent eIF4E phosphorylation at serine 209 activates ß-catenin signaling in BC GMPs. Mechanistically, eIF4E overexpression and phosphorylation leads to increased ß-catenin protein synthesis, whereas MNK-dependent eIF4E phosphorylation is required for nuclear translocation and activation of ß-catenin. Accordingly, we found that a panel of small molecule MNK kinase inhibitors prevented eIF4E phosphorylation, ß-catenin activation, and BC LSC function in vitro and in vivo. Our findings identify the MNK-eIF4E axis as a specific and critical regulator of BC self-renewal, and suggest that pharmacologic inhibition of the MNK kinases may be therapeutically useful in BC chronic myeloid leukemia.


Subject(s)
Blast Crisis/metabolism , Eukaryotic Initiation Factor-4E/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Neoplastic Stem Cells/metabolism , Protein Serine-Threonine Kinases/metabolism , Aniline Compounds/pharmacology , Animals , Blast Crisis/drug therapy , Blast Crisis/pathology , Bone Marrow Cells/metabolism , Bone Marrow Cells/pathology , Female , Humans , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , K562 Cells , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Mice , Mice, Inbred NOD , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Phosphorylation/physiology , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Purines/pharmacology , RNA, Small Interfering/genetics , Xenograft Model Antitumor Assays , beta Catenin/metabolism
17.
Bioorg Med Chem Lett ; 22(4): 1494-8, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22290076

ABSTRACT

A new series of epiminocyclohepta[b]indoles with potent 5-HT(6) antagonist activity were discovered and optimized using in vitro protocols. One compound from this series was progressed to advanced pharmacokinetic (PK) studies followed by 5-HT(6) receptor occupancy studies. The compound was found to have excellent oral absorption, a highly favorable PK profile and demonstrated pharmacodynamic interaction with the 5-HT(6) receptor as shown by ex vivo autoradiography.


Subject(s)
Indoles/pharmacokinetics , Receptors, Serotonin/metabolism , Serotonin Antagonists , Administration, Oral , Animals , Caco-2 Cells , Humans , Indoles/administration & dosage , Indoles/chemistry , Indoles/pharmacology , Molecular Structure , Protein Binding/drug effects , Purinergic P1 Receptor Antagonists , Rats , Rats, Sprague-Dawley , Receptors, Serotonin/chemistry , Serotonin Antagonists/administration & dosage , Serotonin Antagonists/pharmacokinetics , Serotonin Antagonists/pharmacology , Structure-Activity Relationship
18.
J Comput Aided Mol Des ; 25(3): 263-74, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21344277

ABSTRACT

An in silico fragment-based drug design approach was devised and applied towards the identification of small molecule inhibitors of the dengue virus (DENV) NS2B-NS3 protease. Currently, no DENV protease co-crystal structure with bound inhibitor and fully formed substrate binding site is available. Therefore a homology model of DENV NS2B-NS3 protease was generated employing a multiple template spatial restraints method and used for structure-based design. A library of molecular fragments was derived from the ZINC screening database with help of the retrosynthetic combinatorial analysis procedure (RECAP). 150,000 molecular fragments were docked to the DENV protease homology model and the docking poses were rescored using a target-specific scoring function. High scoring fragments were assembled to small molecule candidates by an implicit linking cascade. The cascade included substructure searching and structural filters focusing on interactions with the S1 and S2 pockets of the protease. The chemical space adjacent to the promising candidates was further explored by neighborhood searching. A total of 23 compounds were tested experimentally and two compounds were discovered to inhibit dengue protease (IC(50) = 7.7 µM and 37.9 µM, respectively) and the related West Nile virus protease (IC(50) = 6.3 µM and 39.0 µM, respectively). This study demonstrates the successful application of a structure-guided fragment-based in silico drug design approach for dengue protease inhibitors providing straightforward hit generation using a combination of homology modeling, fragment docking, chemical similarity and structural filters.


Subject(s)
Dengue Virus/enzymology , Drug Design , Endopeptidases/metabolism , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Serine Endopeptidases/metabolism , Amino Acid Sequence , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Dengue/drug therapy , Endopeptidases/chemistry , Humans , Models, Molecular , Molecular Sequence Data , Protein Binding , Serine Endopeptidases/chemistry , West Nile virus/enzymology
19.
ACS Med Chem Lett ; 2(9): 662-6, 2011 Sep 08.
Article in English | MEDLINE | ID: mdl-24900361

ABSTRACT

The natural product aigialomycin D (1) is a member of the resorcylic acid lactone (RAL) family possessing protein kinase inhibitory activities. This paper describes the synthesis of aigialomycin D and a series of its analogues and their activity for the inhibition of protein kinases related to cancer pathways. A preliminary study of these compounds in the inhibition of CDK2/cyclin A kinase has found that aigialomycin D and analogues 11 and 23 are moderate CDK2/cyclin A inhibitors with IC50 values of ca. 20 µM. Kinase profiling of aigialomycin D against a panel of kinases has led to the identification of MNK2 as a promising target (IC50 = 0.45 µM), and preliminary structure-activity relationship studies have been carried out to identify the essential functional groups for activity.

20.
Bioorg Med Chem ; 15(12): 4237-46, 2007 Jun 15.
Article in English | MEDLINE | ID: mdl-17418582

ABSTRACT

A series of A-ring and E-ring analogues of the natural product luotonin A, a known topoisomerase I poison, was evaluated for growth inhibition in human carcinoma and leukemia cell lines. Rational design of structures was based on analogues of the related alkaloid camptothecin, which has been demonstrated to exert cytotoxic effects by the same mechanism of action. When compared to luotonin A, several compounds exhibited an improved topoisomerase I-dependent growth inhibition of a human leukemia cell line.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Pyrroles/chemical synthesis , Pyrroles/pharmacology , Quinones/chemical synthesis , Quinones/pharmacology , Topoisomerase I Inhibitors , Topoisomerase II Inhibitors , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Magnetic Resonance Spectroscopy , Spectrometry, Mass, Electrospray Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...