Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 160(20)2024 May 28.
Article in English | MEDLINE | ID: mdl-38775741

ABSTRACT

Crystal polymorphism of complex liquids plays a crucial role in industrial crystallization, food technology, pharmaceuticals, and materials engineering. However, the experimental identification of unknown crystal structures can be challenging, particularly for high-viscosity complex liquids, such as ionic liquids (ILs). In this study, we performed a molecular dynamics simulation coupled with metadynamics to investigate an imidazolium IL (1-alkyl-3-methylimidazolium hexafluorophosphates). The simulation employed two distinct radial-distribution functions, represented by Gaussian window functions as collective variables, and revealed at least two crystal-like phases distinct from the known α and ß crystal phases typically formed by this IL. Additionally, the simulation unveiled a unique phase characterized by the ordered spatial arrangement of anion aggregations. These crystal-like and unique phases emerged regardless of the potential used. The simulation methodology presented here is broadly applicable for exploring unknown phases in complex systems and contributes to the design of functional materials, such as porous ILs for gas molecule capture and separation.

2.
J Phys Chem Lett ; 15(2): 659-664, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38206160

ABSTRACT

Diversity in structures of water endowed by a hydrogen-bonding network plays crucial roles in wide varieties of phenomena in nature. Chiral ordering of water molecules is an intriguing phenomenon from the viewpoint of bimolecular functions. However, experimental reports on chiral ordering have been limited to the water molecules interacting with biomolecules on the molecular scale. It remains unclear whether pure liquid water forms long-range chiral ordering without any interaction with biomolecules. Here, we show that chiral anisotropy can be observed in the macro/mesoscopic network pattern of an unknown water layer formed via spinodal phase separation-like dynamics at the interface between water and ice III with a chiral crystal structure. We named this unknown water homoimmiscible water. Our observations infer that the unknown water is a chiral liquid crystal. This possibility opens new avenues for a wide variety of research fields such as liquid polymorphism, biology, earth and planetary science, and so forth from the perspective of chirality.

3.
Sci Rep ; 13(1): 16227, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37821508

ABSTRACT

Experimentally demonstrating the existence of waters with local structures unlike that of common water is critical for understanding both the origin of the mysterious properties of water and liquid polymorphism in single component liquids. At the interfaces between water and ices Ih, III, and VI grown/melted under pressure, we previously discovered low- and high-density unknown waters, that are immiscible with the surrounding water. Here, we show, by in-situ optical microscopy, that an unknown water appears at the ice V-water interface via spinodal-like dynamics. The dewetting dynamics of the unknown water indicate that its characteristic velocity is ~ 90 m/s. The time evolution of the characteristic length of the spinodal-like undulation suggests that the dynamics may be described by a common model for spinodal decomposition of an immiscible liquid mixture. Spinodal-like dewetting dynamics of the unknown water transiently showed anisotropy, implying the property of a liquid crystal.

4.
J Chem Phys ; 157(12): 124701, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36182411

ABSTRACT

The molecular-scale growth kinetics of ice from water in the presence of air molecules are still poorly understood, despite their importance for understanding ice particle formation in nature. In this study, a molecular dynamics simulation is conducted to elucidate the molecular-scale growth kinetics at the interface between a (111) plane of cubic ice and water in the presence of N2 molecules. Two potential models of N2 molecules with and without atomic charges are examined. For both models, N2 molecules bind stably to the interface for a period of 1 ns or longer, and the stability of the binding is higher for the charged model than for the noncharged model. Free-energy surfaces of an N2 molecule along the interface and along an ideal (111) plane surface of cubic ice suggest that for both models, the position where an N2 molecule binds stably is different at the interface and on the ideal plane surface, and the stability of the binding is much higher for the interface than for the ideal plane surface. For both models, stacking-disordered ice grows at the interface, and the formation probability of a hexagonal ice layer in the stacking-disordered ice is higher for the charged model than for the uncharged model. The formation probability for the hexagonal ice layer in the stacking-disordered ice depends not only on the stability of binding but also on the positions where N2 molecules bind to the underlying ice and the number of N2 molecules that bind stably to the underlying ice.

5.
J Phys Chem Lett ; 13(19): 4251-4256, 2022 May 19.
Article in English | MEDLINE | ID: mdl-35543729

ABSTRACT

Experimental confirmation of liquid polymorphs of water, high-density liquid (HDL) and low-density liquid (LDL), is desired for understanding not only the liquid state of matter but also the origin of the mysterious properties of water. However, this remains challenging because the liquid-liquid critical point of water lies in experimentally inaccessible supercooling conditions known as "no man's land". Here, we show by in situ optical microscopy that droplets and layers of low- and high-density unknown waters (LDUW and HDUW) appear macroscopically depending upon ice polymorphs at non-equilibrium interfaces between water and ices under experimentally accessible (de)pressurization conditions. These unknown waters were found to have characteristic velocities (about 20 and 100 m/s for LDUW and HDUW, respectively) different from water (about 40 m/s) and quasi-liquid layers (QLLs) (about 2 and 0.2 m/s for droplet and layer forms of QLLs, respectively). Our discoveries provide insight on liquid polymorphism of water.


Subject(s)
Water
6.
Langmuir ; 2022 May 23.
Article in English | MEDLINE | ID: mdl-35604639

ABSTRACT

Elucidating the stable binding conformations of additives at the surface of CaCO3 crystals is essential to biomineralization, scale inhibition, and materials technology. However, accomplishing this by experimental means is rather difficult. In this study, molecular dynamics simulations based on a metadynamics approach were conducted to elucidate the stable binding conformations of a deprotonated polymaleic acid (PMA) additive and two deprotonated poly(acrylic acid) (PAA) additives with different polymerization degrees in the presence of various countercations at a hydrated calcite (104) surface. The simulated free-energy surfaces suggested the existence of several slightly different stable binding conformations for each additive. The appearance of these distinct binding conformations is speculated to originate from different balances of interactions between the additive, the calcite surface, and the countercations. The binding conformations and binding stabilities at the calcite surface were affected by the countercations, with Ca2+ ions producing a more pronounced effect than Na+ ions. Furthermore, the simulation results suggested that the binding stability at the calcite surface was higher for the PMA additive than for the PAA additives, and the PAA additive with a polymerization degree of 10 displayed a binding stability that was similar to or lower than that of the PAA additive with a polymerization degree of 5. The present simulation method provides a new strategy for analyzing the binding conformations of complex additives at material surfaces, developing additives that stably bind to these surfaces, and designing additives to control crystal growth.

7.
ACS Cent Sci ; 8(12): 1704-1710, 2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36589889

ABSTRACT

Many chemical reactions go through a cascade of events in which a series of metastable intermediates appear, and crystal nucleation is no exception. Although the consensus on the energetics of nucleation suggests the formation of metastable states preceding the crystal growth, little experimental evidence has been reported for their dynamics at an atomistic level. Operando imaging of two-dimensional nucleation on a defect-free NaCl nanocrystal in carbon nanotubes using a millisecond angstrom-resolution transmission electron microscope revealed the formation of a metastable "floating island" (FI) that migrates thermally on the (100) facet of NaCl as the first intermediate of epitaxy. The speed of the migration at 298 K is estimated to be larger than 0.3 nm ms-1. When a crystal tumbles in a container, a space repeatedly forms between the crystal and the container wall that hosts the FI. Tumbling changes the surface energy repeatedly and promotes the conversion of the FI into a new epitaxial layer. We anticipate that this surface catalysis mechanism found on the nanoscale also operates in bulk heterogeneous nucleation where agitation and attrition accelerate crystallization.

8.
J Am Chem Soc ; 143(4): 1763-1767, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33475359

ABSTRACT

Crystallization is the process of atoms or molecules forming an organized solid via nucleation and growth. Being intrinsically stochastic, the research at an atomistic level has been a huge experimental challenge. We report herein in situ detection of a crystal nucleus forming during nucleation/growth of a NaCl nanocrystal, as video recorded in the interior of a vibrating conical carbon nanotube at 20-40 ms frame-1 with localization precision of <0.1 nm. We saw NaCl units assembled to form a cluster fluctuating between featureless and semiordered states, which suddenly formed a crystal. Subsequent crystal growth at 298 K and shrinkage at 473 K took place also in a stochastic manner. Productive contributions of the graphitic surface and its mechanical vibration have been experimentally indicated.

9.
Sci Rep ; 10(1): 15465, 2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32963268

ABSTRACT

Melt crystallization is essential to many industrial processes, including semiconductor, ice, and food manufacturing. Nevertheless, our understanding of the melt crystallization mechanism remains poor. This is because the molecular-scale structures of melts are difficult to clarify experimentally. Computer simulations, such as molecular dynamics (MD), are often used to investigate melt structures. However, the time evolution of the structural order in a melt during crystallization must be analyzed properly. In this study, dimensional reduction (DR), which is an unsupervised machine learning technique, is used to evaluate the time evolution of structural order. The DR is performed for high-dimensional data representing an atom-atom pair distribution function and the distribution function of the angle formed by three nearest neighboring atoms at each period during crystallization, which are obtained by an MD simulation of a supercooled Lennard-Jones melt. The results indicate that crystallization occurs via the following activation processes: nucleation of a crystal with a distorted structure and reconstruction of the crystal to a more stable structure. The time evolution of the local structures during crystallization is also evaluated with this method. The present method can be applied to studies of the mechanism of crystallization from a disordered system for real materials, even for complicated multicomponent materials.

10.
J Phys Chem Lett ; 11(16): 6779-6784, 2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32706961

ABSTRACT

Because ice surfaces catalyze various key chemical reactions impacting nature and human life, the structure and dynamics of interfacial layers between water vapor and ice have been extensively debated with attention to the quasi-liquid layer. Other interfaces between liquid water and ice remain relatively underexplored, despite their importance and abundance on the Earth and icy extraterrestrial bodies. By in situ optical microscopy, we found that a high-density liquid layer, distinguishable from bulk water, formed at the interface between water and high-pressure ice III or VI, when they were grown or melted in a sapphire anvil cell. The liquid layer showed a bicontinuous pattern, indicating that immiscible waters with distinct structures were separated on the interfaces in a similar manner to liquid-liquid phase separation through spinodal decomposition. Our observations not only provide a novel opportunity to explore ice surfaces but also give insight into the two kinds of structured water.

11.
Small ; 16(23): e2001721, 2020 06.
Article in English | MEDLINE | ID: mdl-32363808

ABSTRACT

To obtain high quality of drinking water free from biocontaminants is especially important issue. A new strategy employing smectic liquid-crystalline ionic membranes exhibiting 2D structures of layered nanochannels for water treatment is proposed for efficient virus removal and sufficient water flux. The smectic A (SmA) liquid-crystalline membranes obtained by in situ polymerization of an ionic mesogenic monomer are examined for removal of three distinct viruses with small size: Qß bacteriophage, MS2 bacteriophage, and Aichi virus. The semi-bilayer structure of the SmA significantly obstructs the virus penetration with an average log reduction value of 7.3 log10 or the equivalent of reducing 18 million viruses down to 1. Furthermore, the layered nanochannels of the SmA liquid crystal allow efficient water permeation compared to other types of liquid-crystalline membrane consisting of nanopores.


Subject(s)
Liquid Crystals , Nanostructures , Viruses , Water Purification , Membranes, Artificial
12.
Sci Rep ; 10(1): 4708, 2020 Mar 13.
Article in English | MEDLINE | ID: mdl-32170179

ABSTRACT

The mechanism of how ice crystal form has been extensively studied by many researchers but remains an open question. Molecular dynamics (MD) simulations are a useful tool for investigating the molecular-scale mechanism of crystal formation. However, the timescale of phenomena that can be analyzed by MD simulations is typically restricted to microseconds or less, which is far too short to explore ice crystal formation that occurs in real systems. In this study, a metadynamics (MTD) method was adopted to overcome this timescale limitation of MD simulations. An MD simulation combined with the MTD method, in which two discrete oxygen-oxygen radial distribution functions represented by Gaussian window functions were used as collective variables, successfully reproduced the formation of several different ice crystals when the Gaussian window functions were set at appropriate oxygen-oxygen distances: cubic ice, stacking disordered ice consisting of cubic ice and hexagonal ice, high-pressure ice VII, layered ice with an ice VII structure, and layered ice with an unknown structure. The free-energy landscape generated by the MTD method suggests that the formation of each ice crystal occurred via high-density water with a similar structure to the formed ice crystal. The present method can be used not only to study the mechanism of crystal formation but also to search for new crystals in real systems.

13.
ACS Omega ; 4(6): 11014-11024, 2019 Jun 30.
Article in English | MEDLINE | ID: mdl-31460199

ABSTRACT

Control over TiO2 rutile crystal growth and morphology using additives is essential for the development of functional materials. Computer simulation studies on the thermodynamically stable conformations of additives at the surfaces of rutile crystals contribute to understanding the mechanisms underlying this control. In this study, a metadynamics method was combined with molecular dynamics simulations to investigate the thermodynamically stable conformations of glycolate, lactate, and 2-hydroxybutyrate ions at the {001} and {110} planes of rutile crystals. Two simple atom-atom distances were selected as collective variables for the metadynamics method. At the {001} plane, a conformation in which the COO- group was oriented toward the surface was found to be the most stable for the lactate and 2-hydroxybutyrate ions, whereas a conformation in which the COO- group was oriented toward water was the most stable for the glycolate ion. At the {110} plane, a conformation in which the COO- group was oriented toward the surface was the most stable for all three hydroxylate ions, and a second most stable conformation was also observed for the lactate ion at positions close to the {110} plane. For all three hydroxylate ions (α-hydroxycarboxylate ions), the stability of the most stable conformation was higher for the {110} plane than for the {001} plane. At both planes, the stability of the most stable conformation was highest for the 2-hydroxybutyrate ion and lowest for the glycolate ion. Supposing that all three hydroxylate ions serve to decrease the surface free energy at the rutile surface and that a more stable conformation at the rutile surface leads to a greater decrease in the surface free energy, the present results partially explain experimentally observed differences in the changes in growth rate and morphology of rutile crystals in the presence of glycolic, lactic, and 2-hydroxybutyric acids.

14.
Proc Natl Acad Sci U S A ; 116(18): 8679-8684, 2019 04 30.
Article in English | MEDLINE | ID: mdl-30988187

ABSTRACT

Crystal growth is governed by an interplay between macroscopic driving force and microscopic interface kinetics at the crystal-liquid interface. Unlike the local equilibrium growth condition, the interplay becomes blurred under local nonequilibrium, which raises many questions about the nature of diverse crystal growth and morphological transitions. Here, we systematically control the growth condition from local equilibrium to local nonequilibrium by using an advanced dynamic diamond anvil cell (dDAC) and generate anomalously fast growth of ice VI phase with a morphological transition from three- to two-dimension (3D to 2D), which is called a shock crystal growth. Unlike expected, the shock growth occurs from the edges of 3D crystal along the (112) crystal plane rather than its corners, which implies that the fast compression yields effectively large overpressure at the crystal-liquid interface, manifesting the local nonequilibrium condition. Molecular dynamics (MD) simulation reproduces the faster growth of the (112) plane than other planes upon applying large overpressure. Moreover, the MD study reveals that the 2D shock crystal growth originates from the similarity of the interface structure between water and the (112) crystal plane under the large overpressure. This study provides insight into crystal growth under dynamic compressions, which makes a bridge for the unknown behaviors of crystal growth between under static and dynamic pressure conditions.

15.
Adv Sci (Weinh) ; 5(1): 1700405, 2018 01.
Article in English | MEDLINE | ID: mdl-29375969

ABSTRACT

Supply of safe fresh water is currently one of the most important global issues. Membranes technologies are essential to treat water efficiently with low costs and energy consumption. Here, the development of self-organized nanostructured water treatment membranes based on ionic liquid crystals composed of ammonium, imidazolium, and pyridinium moieties is reported. Membranes with preserved 1D or 3D self-organized sub-nanopores are obtained by photopolymerization of ionic columnar or bicontinuous cubic liquid crystals. These membranes show salt rejection ability, ion selectivity, and excellent water permeability. The relationships between the structures and the transport properties of water molecules and ionic solutes in the sub-nanopores in the membranes are examined by molecular dynamics simulations. The results suggest that the volume of vacant space in the nanochannel greatly affects the water and ion permeability.

16.
ACS Omega ; 3(5): 5789-5798, 2018 May 31.
Article in English | MEDLINE | ID: mdl-31458779

ABSTRACT

A new methodology for definitively evaluating the structural similarity between different phases in an impartial manner is proposed. This methodology utilizes a dimensionality reduction (DR) technique that was developed in the fields of machine learning and statistics. The basis of the proposed methodology is that the structural similarity between different phases can be evaluated by the geometrical similarity of pair and/or angular distribution functions that reflect the atomic-scale structure of each phase. The DR technique is used for the analysis of this geometrical similarity. In this study, the proposed methodology is applied to evaluate the similarity in the atomic-scale structure, as obtained from molecular dynamics simulations, between amorphous CaCO3 and CaCO3 crystal phases in the presence or absence of additives, namely, Mg2+ ions, Sr2+ ions, and water molecules. The results indicate that in the absence of additives, the structure of the amorphous phase is closer to that of vaterite than to those of calcite or aragonite. However, the degree of structural similarity between the amorphous phase and vaterite decreases if Mg2+ ions are present. This tendency is also evident when Sr2+ ions are present, although these ions do not influence the structure of the amorphous phase as strongly as Mg2+ ions. In addition, the results indicate that at a high water concentration, the amorphous phase is separated into small particles by hydrogen-bonded networks of water molecules and the structure of the amorphous phase more closely approaches that of vaterite. The proposed methodology is widely applicable to the evaluation of the structural similarity between different phases for complex multicomponent systems.

17.
J Chem Phys ; 145(24): 244706, 2016 Dec 28.
Article in English | MEDLINE | ID: mdl-28049310

ABSTRACT

This paper presents a modified version of the six-site model of H2O [H. Nada and J. P. J. M. van der Eerden, J. Chem. Phys. 118, 7401 (2003)]. Although the original six-site model was optimized by assuming the cut-off of the Coulomb interaction at an intermolecular distance of 10 Å, the modified model is optimized by using the Ewald method for estimating the Coulomb interaction. Molecular dynamics (MD) simulations of an ice-water interface suggest that the melting point of ice at 1 atm in the modified model is approximately 274.5 K, in good agreement with the real melting point of 273.15 K. MD simulations of bulk ice and water suggest that the modified model reproduces not only the structures and density curves of ice and water, but also the diffusion coefficient of water molecules in water near the melting point at 1 atm. Using the modified model, a large-scale MD simulation of the growth at an ice-water interface of the prismatic plane is performed to elucidate the anisotropy in the interface structure during growth. Simulation results indicate that the geometrical roughness of the ice growth front at the interface is greater in the c-axis direction than in the direction normal to the c-axis when it is analyzed along the axes parallel to the prismatic plane. In addition, during the growth at the interface, the transient appearance of specific crystallographic planes, such as a {202¯1} pyramidal plane, occurs preferentially at the ice growth front. The effect of different ensembles with different simulation systems on the anisotropy in the interface structure is also investigated.

18.
J Phys Chem B ; 117(47): 14849-56, 2013 Nov 27.
Article in English | MEDLINE | ID: mdl-24188003

ABSTRACT

Molecular dynamics simulations were conducted to elucidate the effects of Mg(2+) and H2O additives on the structure of amorphous calcium carbonate (ACC). New potential parameters for Mg(2+) ions were developed. The distribution function of the angle formed by three nearest-neighbor atoms was introduced to analyze the short-range local structure of ACC. The simulation indicated that ACC had a weakly ordered local structure resembling the local structure of a CaCO3 crystal. The local structure of pure ACC resembled that of vaterite. The formation of the vaterite-like local structure was hindered by Mg(2+) ions, whereas H2O molecules did not significantly influence the structure of ACC when the fraction of H2O molecules was low. However, when the fraction of H2O was high, the formation of a monohydrocalcite-like local structure was promoted. The effects of the additives on the structure of ACC were verified using the size of the additives and the interaction between the additives and CaCO3. The simulated structure of ACC was compared with the structure of CaCO3 crystals nucleated through the formation of ACC particles in real systems.

19.
Chem Asian J ; 8(12): 3002-9, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24006084

ABSTRACT

Thin-film growth of aragonite CaCO3 on annealed poly(vinyl alcohol) (PVA) matrices is induced by adding Mg(2+) into a supersaturated solution of CaCO3. Both the growth rate and surface morphology of the aragonite thin films depend upon the concentration of Mg(2+) in the mineralization solution. In the absence of PVA matrices, no thin films are formed, despite the presence of Mg(2+). Molecular dynamics simulation of the CaCO3 precursor suggests that the transition of amorphous calcium carbonate to crystals is suppressed in the presence of Mg(2+). The role for ionic additives in the crystallization of CaCO3 on organic templates obtained in this study may provide useful information for the development of functional hybrid materials.


Subject(s)
Calcium Carbonate/chemistry , Calcium Carbonate/chemical synthesis , Magnesium/chemistry , Polyvinyl Alcohol/chemistry , Crystallization , Ions/chemistry , Particle Size , Surface Properties
20.
J Phys Chem B ; 113(14): 4790-8, 2009 Apr 09.
Article in English | MEDLINE | ID: mdl-19338367

ABSTRACT

The growth kinetics of a tetrahydrofuran (THF) clathrate hydrate at the interface between the clathrate and an aqueous THF solution were investigated by means of a molecular dynamic simulation. The simulation was carried out for the interface of both the {100} and {111} planes of the THF clathrate. The simulation indicated the same anisotropic growth as that observed in real systems: the growth of the THF clathrate was much slower at the {111} interface than at the {100} interface. When the THF clathrate grew, THF molecules that were dissolved in the solution first were arranged at both large and small cage sites on the interface. Subsequently, the formation of cages by H(2)O molecules occurred in regions surrounded or sandwiched by those arranged THF molecules. As the formation of cages progressed, the THF molecules that had once been arranged at small cage sites gradually moved away from the sites, and finally the structure of the clathrate was completely formed. Simulation results strongly suggested that the rate-determining process for clathrate growth was the rearrangement of THF molecules at the interface from a disordered state to a state in which THF molecules were ideally arranged at large cage sites only. This rearrangement occurred much more slowly at the {111} interface than at the {100} interface, owing to the formation of a modified structure in which large and small cages were formed at opposite positions of the {111} interface. The anisotropic growth kinetics of the THF clathrate, which were obtained in this study, are consistent with the fact that growth shapes of THF clathrates in real systems are octahedral with flat {111} planes.


Subject(s)
Computer Simulation , Furans/chemistry , Models, Chemical , Water/chemistry , Anisotropy , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...