Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Neural Comput ; 34(2): 437-475, 2022 01 14.
Article in English | MEDLINE | ID: mdl-34758487

ABSTRACT

Classification is one of the major tasks that deep learning is successfully tackling. Categorization is also a fundamental cognitive ability. A well-known perceptual consequence of categorization in humans and other animals, categorical perception, is notably characterized by a within-category compression and a between-category separation: two items, close in input space, are perceived closer if they belong to the same category than if they belong to different categories. Elaborating on experimental and theoretical results in cognitive science, here we study categorical effects in artificial neural networks. We combine a theoretical analysis that makes use of mutual and Fisher information quantities and a series of numerical simulations on networks of increasing complexity. These formal and numerical analyses provide insights into the geometry of the neural representation in deep layers, with expansion of space near category boundaries and contraction far from category boundaries. We investigate categorical representation by using two complementary approaches: one mimics experiments in psychophysics and cognitive neuroscience by means of morphed continua between stimuli of different categories, while the other introduces a categoricality index that, for each layer in the network, quantifies the separability of the categories at the neural population level. We show on both shallow and deep neural networks that category learning automatically induces categorical perception. We further show that the deeper a layer, the stronger the categorical effects. As an outcome of our study, we propose a coherent view of the efficacy of different heuristic practices of the dropout regularization technique. More generally, our view, which finds echoes in the neuroscience literature, insists on the differential impact of noise in any given layer depending on the geometry of the neural representation that is being learned, that is, on how this geometry reflects the structure of the categories.


Subject(s)
Deep Learning , Animals , Cognition , Humans , Perception
2.
Neural Comput ; 34(1): 45-77, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34758479

ABSTRACT

In experiments on perceptual decision making, individuals learn a categorization task through trial-and-error protocols. We explore the capacity of a decision-making attractor network to learn a categorization task through reward-based, Hebbian-type modifications of the weights incoming from the stimulus encoding layer. For the latter, we assume a standard layer of a large number of stimulus-specific neurons. Within the general framework of Hebbian learning, we have hypothesized that the learning rate is modulated by the reward at each trial. Surprisingly, we find that when the coding layer has been optimized in view of the categorization task, such reward-modulated Hebbian learning (RMHL) fails to extract efficiently the category membership. In previous work, we showed that the attractor neural networks' nonlinear dynamics accounts for behavioral confidence in sequences of decision trials. Taking advantage of these findings, we propose that learning is controlled by confidence, as computed from the neural activity of the decision-making attractor network. Here we show that this confidence-controlled, reward-based Hebbian learning efficiently extracts categorical information from the optimized coding layer. The proposed learning rule is local and, in contrast to RMHL, does not require storing the average rewards obtained on previous trials. In addition, we find that the confidence-controlled learning rule achieves near-optimal performance. In accordance with this result, we show that the learning rule approximates a gradient descent method on a maximizing reward cost function.


Subject(s)
Learning , Neural Networks, Computer , Algorithms , Humans , Learning/physiology , Neurons/physiology , Reward
3.
Sci Rep ; 10(1): 7940, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32409634

ABSTRACT

Electrophysiological recordings during perceptual decision tasks in monkeys suggest that the degree of confidence in a decision is based on a simple neural signal produced by the neural decision process. Attractor neural networks provide an appropriate biophysical modeling framework, and account for the experimental results very well. However, it remains unclear whether attractor neural networks can account for confidence reports in humans. We present the results from an experiment in which participants are asked to perform an orientation discrimination task, followed by a confidence judgment. Here we show that an attractor neural network model quantitatively reproduces, for each participant, the relations between accuracy, response times and confidence. We show that the attractor neural network also accounts for confidence-specific sequential effects observed in the experiment (participants are faster on trials following high confidence trials). Remarkably, this is obtained as an inevitable outcome of the network dynamics, without any feedback specific to the previous decision (that would result in, e.g., a change in the model parameters before the onset of the next trial). Our results thus suggest that a metacognitive process such as confidence in one's decision is linked to the intrinsically nonlinear dynamics of the decision-making neural network.


Subject(s)
Decision Making/physiology , Nerve Net/physiology , Nonlinear Dynamics , Perception/physiology , Adult , Female , Humans , Judgment , Male , Models, Neurological
4.
J Neurosci ; 39(5): 833-853, 2019 01 30.
Article in English | MEDLINE | ID: mdl-30504276

ABSTRACT

Perceptual decision-making is the subject of many experimental and theoretical studies. Most modeling analyses are based on statistical processes of accumulation of evidence. In contrast, very few works confront attractor network models' predictions with empirical data from continuous sequences of trials. Recently however, numerical simulations of a biophysical competitive attractor network model have shown that such a network can describe sequences of decision trials and reproduce repetition biases observed in perceptual decision experiments. Here we get more insights into such effects by considering an extension of the reduced attractor network model of Wong and Wang (2006), taking into account an inhibitory current delivered to the network once a decision has been made. We make explicit the conditions on this inhibitory input for which the network can perform a succession of trials, without being either trapped in the first reached attractor, or losing all memory of the past dynamics. We study in detail how, during a sequence of decision trials, reaction times and performance depend on nonlinear dynamics of the network, and we confront the model behavior with empirical findings on sequential effects. Here we show that, quite remarkably, the network exhibits, qualitatively and with the correct order of magnitude, post-error slowing and post-error improvement in accuracy, two subtle effects reported in behavioral experiments in the absence of any feedback about the correctness of the decision. Our work thus provides evidence that such effects result from intrinsic properties of the nonlinear neural dynamics.SIGNIFICANCE STATEMENT Much experimental and theoretical work is being devoted to the understanding of the neural correlates of perceptual decision-making. In a typical behavioral experiment, animals or humans perform a continuous series of binary discrimination tasks. To model such experiments, we consider a biophysical decision-making attractor neural network, taking into account an inhibitory current delivered to the network once a decision is made. Here we provide evidence that the same intrinsic properties of the nonlinear network dynamics underpins various sequential effects reported in experiments. Quite remarkably, in the absence of feedback on the correctness of the decisions, the network exhibits post-error slowing (longer reaction times after error trials) and post-error improvement in accuracy (smaller error rates after error trials).


Subject(s)
Decision Making/physiology , Neural Networks, Computer , Perception/physiology , Reaction Time/physiology , Algorithms , Computer Simulation , Discrimination, Psychological/physiology , Memory/physiology , Models, Neurological , Nonlinear Dynamics , Psychomotor Performance , Synapses/physiology
5.
Elife ; 72018 11 12.
Article in English | MEDLINE | ID: mdl-30418871

ABSTRACT

The cerebellum aids the learning of fast, coordinated movements. According to current consensus, erroneously active parallel fibre synapses are depressed by complex spikes signalling movement errors. However, this theory cannot solve the credit assignment problem of processing a global movement evaluation into multiple cell-specific error signals. We identify a possible implementation of an algorithm solving this problem, whereby spontaneous complex spikes perturb ongoing movements, create eligibility traces and signal error changes guiding plasticity. Error changes are extracted by adaptively cancelling the average error. This framework, stochastic gradient descent with estimated global errors (SGDEGE), predicts synaptic plasticity rules that apparently contradict the current consensus but were supported by plasticity experiments in slices from mice under conditions designed to be physiological, highlighting the sensitivity of plasticity studies to experimental conditions. We analyse the algorithm's convergence and capacity. Finally, we suggest SGDEGE may also operate in the basal ganglia.


Subject(s)
Cerebellum/physiology , Learning , Action Potentials/physiology , Algorithms , Animals , Computer Simulation , Female , Long-Term Potentiation , Mice, Inbred C57BL , Neural Networks, Computer , Neuronal Plasticity/physiology , Purkinje Cells/physiology , Time Factors
6.
Sci Rep ; 8(1): 107, 2018 01 08.
Article in English | MEDLINE | ID: mdl-29311553

ABSTRACT

As a large-scale instance of dramatic collective behaviour, the 2005 French riots started in a poor suburb of Paris, then spread in all of France, lasting about three weeks. Remarkably, although there were no displacements of rioters, the riot activity did travel. Access to daily national police data has allowed us to explore the dynamics of riot propagation. Here we show that an epidemic-like model, with just a few parameters and a single sociological variable characterizing neighbourhood deprivation, accounts quantitatively for the full spatio-temporal dynamics of the riots. This is the first time that such data-driven modelling involving contagion both within and between cities (through geographic proximity or media) at the scale of a country, and on a daily basis, is performed. Moreover, we give a precise mathematical characterization to the expression "wave of riots", and provide a visualization of the propagation around Paris, exhibiting the wave in a way not described before. The remarkable agreement between model and data demonstrates that geographic proximity played a major role in the propagation, even though information was readily available everywhere through media. Finally, we argue that our approach gives a general framework for the modelling of the dynamics of spontaneous collective uprisings.


Subject(s)
Models, Theoretical , Riots/statistics & numerical data , Algorithms , France , History, 21st Century , Humans , Riots/history
7.
PLoS One ; 7(7): e39916, 2012.
Article in English | MEDLINE | ID: mdl-22848365

ABSTRACT

A new viewpoint on electoral involvement is proposed from the study of the statistics of the proportions of abstentionists, blank and null, and votes according to list of choices, in a large number of national elections in different countries. Considering 11 countries without compulsory voting (Austria, Canada, Czech Republic, France, Germany, Italy, Mexico, Poland, Romania, Spain, and Switzerland), a stylized fact emerges for the most populated cities when one computes the entropy associated to the three ratios, which we call the entropy of civic involvement of the electorate. The distribution of this entropy (over all elections and countries) appears to be sharply peaked near a common value. This almost common value is typically shared since the 1970s by electorates of the most populated municipalities, and this despite the wide disparities between voting systems and types of elections. Performing different statistical analyses, we notably show that this stylized fact reveals particular correlations between the blank/null votes and abstentionists ratios. We suggest that the existence of this hidden regularity, which we propose to coin as a 'weak law on recent electoral behavior among urban voters', reveals an emerging collective behavioral norm characteristic of urban citizen voting behavior in modern democracies. Analyzing exceptions to the rule provides insights into the conditions under which this normative behavior can be expected to occur.


Subject(s)
Government Regulation , Jurisprudence , Models, Theoretical , Politics , Urban Population , Humans
8.
PLoS Comput Biol ; 8(4): e1002448, 2012.
Article in English | MEDLINE | ID: mdl-22570592

ABSTRACT

The cerebellum has long been considered to undergo supervised learning, with climbing fibers acting as a 'teaching' or 'error' signal. Purkinje cells (PCs), the sole output of the cerebellar cortex, have been considered as analogs of perceptrons storing input/output associations. In support of this hypothesis, a recent study found that the distribution of synaptic weights of a perceptron at maximal capacity is in striking agreement with experimental data in adult rats. However, the calculation was performed using random uncorrelated inputs and outputs. This is a clearly unrealistic assumption since sensory inputs and motor outputs carry a substantial degree of temporal correlations. In this paper, we consider a binary output neuron with a large number of inputs, which is required to store associations between temporally correlated sequences of binary inputs and outputs, modelled as Markov chains. Storage capacity is found to increase with both input and output correlations, and diverges in the limit where both go to unity. We also investigate the capacity of a bistable output unit, since PCs have been shown to be bistable in some experimental conditions. Bistability is shown to enhance storage capacity whenever the output correlation is stronger than the input correlation. Distribution of synaptic weights at maximal capacity is shown to be independent on correlations, and is also unaffected by the presence of bistability.


Subject(s)
Action Potentials/physiology , Information Storage and Retrieval/methods , Memory/physiology , Models, Neurological , Pattern Recognition, Physiological/physiology , Purkinje Cells/physiology , Animals , Computer Simulation , Humans , Statistics as Topic
9.
Brain Res ; 1434: 47-61, 2012 Jan 24.
Article in English | MEDLINE | ID: mdl-21920507

ABSTRACT

Reaction-times in perceptual tasks are the subject of many experimental and theoretical studies. With the neural decision making process as main focus, most of these works concern discrete (typically binary) choice tasks, implying the identification of the stimulus as an exemplar of a category. Here we address issues specific to the perception of categories (e.g. vowels, familiar faces, …), making a clear distinction between identifying a category (an element of a discrete set) and estimating a continuous parameter (such as a direction). We exhibit a link between optimal Bayesian decoding and coding efficiency, the latter being measured by the mutual information between the discrete category set and the neural activity. We characterize the properties of the best estimator of the likelihood of the category, when this estimator takes its inputs from a large population of stimulus-specific coding cells. Adopting the diffusion-to-bound approach to model the decisional process, this allows to relate analytically the bias and variance of the diffusion process underlying decision making to macroscopic quantities that are behaviorally measurable. A major consequence is the existence of a quantitative link between reaction times and discrimination accuracy. The resulting analytical expression of mean reaction times during an identification task accounts for empirical facts, both qualitatively (e.g. more time is needed to identify a category from a stimulus at the boundary compared to a stimulus lying within a category), and quantitatively (working on published experimental data on phoneme identification tasks).


Subject(s)
Choice Behavior/physiology , Discrimination, Psychological/physiology , Perception/physiology , Reaction Time/physiology , Humans
10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(6 Pt 2): 066120, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20866491

ABSTRACT

In the 70s Schelling introduced a multiagent model to describe the segregation dynamics that may occur with individuals having only weak preferences for "similar" neighbors. Recently variants of this model have been discussed, in particular, with emphasis on the links with statistical physics models. Whereas these models consider a fixed number of agents moving on a lattice, here, we present a version allowing for exchanges with an external reservoir of agents. The density of agents is controlled by a parameter which can be viewed as measuring the attractiveness of the city lattice. This model is directly related to the zero-temperature dynamics of the Blume-Emery-Griffiths spin-1 model, with kinetic constraints. With a varying vacancy density, the dynamics with agents making deterministic decisions leads to a variety of "phases" whose main features are the characteristics of the interfaces between clusters of agents of different types. The domains of existence of each type of interface are obtained analytically as well as numerically. These interfaces may completely isolate the agents leading to another type of segregation as compared to what is observed in the original Schelling model, and we discuss its possible socioeconomic correlates.

11.
Proc Natl Acad Sci U S A ; 107(17): 7629-34, 2010 Apr 27.
Article in English | MEDLINE | ID: mdl-20385842

ABSTRACT

A single social phenomenon (such as crime, unemployment, or birthrate) can be observed through temporal series corresponding to units at different levels (i.e., cities, regions, and countries). Units at a given local level may follow a collective trend imposed by external conditions, but also may display fluctuations of purely local origin. The local behavior is usually computed as the difference between the local data and a global average (e.g, a national average), a viewpoint that can be very misleading. We propose here a method for separating the local dynamics from the global trend in a collection of correlated time series. We take an independent component analysis approach in which we do not assume a small average local contribution in contrast with previously proposed methods. We first test our method on synthetic series generated by correlated random walkers. We then consider crime rate series (in the United States and France) and the evolution of obesity rate in the United States, which are two important examples of societal measures. For the crime rates in the United States, we observe large fluctuations in the transition period of mid-70s during which crime rates increased significantly, whereas since the 80s, the state crime rates are governed by external factors and the importance of local specificities being decreasing. In the case of obesity, our method shows that external factors dominate the evolution of obesity since 2000, and that different states can have different dynamical behavior even if their obesity prevalence is similar.


Subject(s)
Data Interpretation, Statistical , Models, Theoretical , Obesity/epidemiology , Social Behavior , Social Problems/statistics & numerical data , France , Humans , Time Factors , United States/epidemiology
12.
J Comput Neurosci ; 25(1): 169-87, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18236147

ABSTRACT

This paper deals with the analytical study of coding a discrete set of categories by a large assembly of neurons. We consider population coding schemes, which can also be seen as instances of exemplar models proposed in the literature to account for phenomena in the psychophysics of categorization. We quantify the coding efficiency by the mutual information between the set of categories and the neural code, and we characterize the properties of the most efficient codes, considering different regimes corresponding essentially to different signal-to-noise ratio. One main outcome is to find that, in a high signal-to-noise ratio limit, the Fisher information at the population level should be the greatest between categories, which is achieved by having many cells with the stimulus-discriminating parts (steepest slope) of their tuning curves placed in the transition regions between categories in stimulus space. We show that these properties are in good agreement with both psychophysical data and with the neurophysiology of the inferotemporal cortex in the monkey, a cortex area known to be specifically involved in classification tasks.


Subject(s)
Classification , Mental Processes/physiology , Models, Neurological , Models, Psychological , Perception/physiology , Temporal Lobe/physiology , Algorithms , Animals , Brain Mapping , Haplorhini , Likelihood Functions , Temporal Lobe/ultrastructure
13.
Trends Neurosci ; 30(12): 622-9, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17983670

ABSTRACT

Much research effort into synaptic plasticity has been motivated by the idea that modifications of synaptic weights (or strengths or efficacies) underlie learning and memory. Here, we examine the possibility of exploiting the statistics of experimentally measured synaptic weights to deduce information about the learning process. Analysing distributions of synaptic weights requires a theoretical framework to interpret the experimental measurements, but the results can be unexpectedly powerful, yielding strong constraints on possible learning theories as well as information that is difficult to obtain by other means, such as the information storage capacity of a cell. We review the available experimental and theoretical techniques as well as important open issues.


Subject(s)
Brain/physiology , Learning/physiology , Neuronal Plasticity/physiology , Neurons/physiology , Synapses/physiology , Animals , Brain/cytology , Humans , Memory/physiology , Neurons/classification , Neurons/cytology , Synapses/classification
14.
Cognition ; 101(3): B31-41, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16364279

ABSTRACT

Phonological rules relate surface phonetic word forms to abstract underlying forms that are stored in the lexicon. Infants must thus acquire these rules in order to infer the abstract representation of words. We implement a statistical learning algorithm for the acquisition of one type of rule, namely allophony, which introduces context-sensitive phonetic variants of phonemes. This algorithm is based on the observation that different realizations of a single phoneme typically do not appear in the same contexts (ideally, they have complementary distributions). In particular, it measures the discrepancies in context probabilities for each pair of phonetic segments. In Experiment 1, we test the algorithm's performances on a pseudo-language and show that it is robust to statistical noise due to sampling and coding errors, and to non-systematic rule application. In Experiment 2, we show that a natural corpus of semiphonetically transcribed child-directed speech in French presents a very large number of near-complementary distributions that do not correspond to existing allophonic rules. These spurious allophonic rules can be eliminated by a linguistically motivated filtering mechanism based on a phonetic representation of segments. We discuss the role of a priori linguistic knowledge in the statistical learning of phonology.


Subject(s)
Linguistics/statistics & numerical data , Phonetics , Verbal Learning , Humans , Linguistics/methods , Models, Statistical
15.
Bioinformatics ; 21(20): 3859-64, 2005 Oct 15.
Article in English | MEDLINE | ID: mdl-16221984

ABSTRACT

MOTIVATION: We consider any collection of microarrays that can be ordered to form a progression; for example, as a function of time, severity of disease or dose of a stimulant. By plotting the expression level of each gene as a function of time, or severity, or dose, we form an expression series, or curve, for each gene. While most of these curves will exhibit random fluctuations, some will contain a pattern, and these are the genes that are most likely associated with the quantity used to order them. RESULTS: We introduce a method of identifying the pattern and hence genes in microarray expression curves without knowing what kind of pattern to look for. Key to our approach is the sequence of ups and downs formed by pairs of consecutive data points in each curve. As a benchmark, we blindly identified genes from yeast cell cycles without selecting for periodic or any other anticipated behaviour. CONTACT: tmf20@cam.ac.uk SUPPLEMENTARY INFORMATION: The complete versions of Table 2 and Figure 4, as well as other material, can be found at http://www.lps.ens.fr/~willbran/up-down/ or http://www.tcm.phy.cam.ac.uk/~tmf20/up-down/


Subject(s)
Algorithms , Gene Expression Profiling/methods , Gene Expression Regulation/physiology , Oligonucleotide Array Sequence Analysis/methods , Pattern Recognition, Automated/methods , Time Factors
16.
Neuron ; 43(5): 745-57, 2004 Sep 02.
Article in English | MEDLINE | ID: mdl-15339654

ABSTRACT

It is widely believed that synaptic modifications underlie learning and memory. However, few studies have examined what can be deduced about the learning process from the distribution of synaptic weights. We analyze the perceptron, a prototypical feedforward neural network, and obtain the optimal synaptic weight distribution for a perceptron with excitatory synapses. It contains more than 50% silent synapses, and this fraction increases with storage reliability: silent synapses are therefore a necessary byproduct of optimizing learning and reliability. Exploiting the classical analogy between the perceptron and the cerebellar Purkinje cell, we fitted the optimal weight distribution to that measured for granule cell-Purkinje cell synapses. The two distributions agreed well, suggesting that the Purkinje cell can learn up to 5 kilobytes of information, in the form of 40,000 input-output associations.


Subject(s)
Afferent Pathways/physiology , Learning/physiology , Nerve Net/physiology , Purkinje Cells/physiology , Synapses/physiology , Synaptic Transmission/physiology , Afferent Pathways/cytology , Animals , Excitatory Postsynaptic Potentials/physiology , Models, Neurological , Nerve Net/cytology , Neural Inhibition/physiology , Neural Networks, Computer , Purkinje Cells/cytology , Rats , Reproducibility of Results , Synapses/ultrastructure
17.
Vision Res ; 43(9): 1061-79, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12676248

ABSTRACT

Natural images are complex but very structured objects and, in spite of its complexity, the sensory areas in the neocortex in mammals are able to devise learned strategies to encode them efficiently. How is this goal achieved? In this paper, we will discuss the multiscaling approach, which has been recently used to derive a redundancy reducing wavelet basis. This kind of representation can be statistically learned from the data and is optimally adapted for image coding; besides, it presents some remarkable features found in the visual pathway. We will show that the introduction of oriented wavelets is necessary to provide a complete description, which stresses the role of the wavelets as edge detectors.


Subject(s)
Image Processing, Computer-Assisted , Models, Psychological , Visual Perception/physiology , Computational Biology , Humans
19.
Phys Rev Lett ; 88(9): 099801, 2002 Mar 04.
Article in English | MEDLINE | ID: mdl-11864063
SELECTION OF CITATIONS
SEARCH DETAIL