Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Opin Chem Biol ; 80: 102458, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38670028

ABSTRACT

Fluorescent probes have revolutionized biological imaging by enabling the real-time visualization of cellular processes under physiological conditions. However, their size and potential perturbative nature can pose challenges in retaining the integrity of biological functions. This manuscript highlights recent advancements in the development of small fluorescent probes for optical imaging studies. Single benzene-based fluorophores offer versatility with minimal disruption, exhibiting diverse properties like aggregation-induced emission and pH responsiveness. Fluorescent nucleobases enable precise labeling of nucleic acids without compromising function, offering high sensitivity and compatibility with biochemistry studies. Bright yet small fluorescent amino acids provide an interesting alternative to bulky fusion proteins, facilitating non-invasive imaging of cellular events with high precision. These miniaturized fluorophores promise enhanced capabilities for studying biological systems in a non-invasive manner, fostering further innovations in molecular imaging.

2.
Cell Mol Life Sci ; 79(12): 606, 2022 Nov 27.
Article in English | MEDLINE | ID: mdl-36436181

ABSTRACT

Lactate dehydrogenase 5 (LDH5) is overexpressed in many cancers and is a potential target for anticancer therapy due to its role in aerobic glycolysis. Small-molecule drugs have been developed as competitive inhibitors to bind substrate/cofactor sites of LDH5, but none reached the clinic to date. Recently, we designed the first LDH5 non-competitive inhibitor, cGmC9, a peptide that inhibits protein-protein interactions required for LDH5 enzymatic activity. Peptides are gaining a large interest as anticancer agents to modulate intracellular protein-protein interactions not targetable by small molecules; however, delivery of these peptides to the cytosol, where LDH5 and other anticancer targets are located, remains a challenge for this class of therapeutics. In this study, we focused on the cellular internalisation of cGmC9 to achieve LDH5 inhibition in the cytosol. We designed cGmC9 analogues and compared them for LDH5 inhibition, cellular uptake, toxicity, and antiproliferation against a panel of cancer cell lines. The lead analogue, [R/r]cGmC9, specifically impairs proliferation of cancer cell lines with high glycolytic profiles. Proteomics analysis showed expected metabolic changes in response to decreased glycolysis. This is the first report of a peptide-based LDH5 inhibitor able to modulate cancer metabolism and kill cancer cells that are glycolytic. The current study demonstrates the potential of using peptides as inhibitors of intracellular protein-protein interactions relevant for cancer pathways and shows that active peptides can be rationally designed to improve their cell permeation.


Subject(s)
L-Lactate Dehydrogenase , Neoplasms , Humans , Lactate Dehydrogenase 5 , Peptides/pharmacology , Neoplasms/drug therapy , Cell Proliferation
3.
J Med Chem ; 64(7): 3767-3779, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33765386

ABSTRACT

Lactate dehydrogenase 5 (LDH5) is overexpressed in metastatic tumors and is an attractive target for anticancer therapy. Small-molecule drugs have been developed to target the substrate/cofactor sites of LDH5, but none has reached the clinic to date, and alternative strategies remain almost unexplored. Combining rational and computer-based approaches, we identified peptidic sequences with high affinity toward a ß-sheet region that is involved in protein-protein interactions (PPIs) required for the activity of LDH5. To improve stability and potency, these sequences were grafted into a cyclic cell-penetrating ß-hairpin peptide scaffold. The lead grafted peptide, cGmC9, inhibited LDH5 activity in vitro in low micromolar range and more efficiently than the small-molecule inhibitor GNE-140. cGmC9 inhibits LDH5 by targeting an interface unlikely to be inhibited by small-molecule drugs. This lead will guide the development of new LDH5 inhibitors and challenges the landscape of drug discovery programs exclusively dedicated to small molecules.


Subject(s)
Enzyme Inhibitors/pharmacology , Lactate Dehydrogenase 5/antagonists & inhibitors , Peptides/pharmacology , Protein Multimerization/drug effects , Binding Sites , Blood/metabolism , Cell Line, Tumor , Enzyme Inhibitors/metabolism , Humans , Lactate Dehydrogenase 5/chemistry , Lactate Dehydrogenase 5/metabolism , Male , Molecular Dynamics Simulation , Peptides/metabolism , Protein Binding , Protein Conformation, beta-Strand , Protein Stability
SELECTION OF CITATIONS
SEARCH DETAIL
...