Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Environ Pollut ; 336: 122412, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37597729

ABSTRACT

In addition, wet solid waste can be converted to fuel components using hydrothermal liquefaction technology. To minimize the adversity of environmental pollution, some of the preventive measures need to be undertaken by following the principles of 3R's- Reuse, Reduce and Recycle, each one plant one, use of public transportation and adopt the use of carpooling to save fuel.

2.
Crit Rev Biotechnol ; : 1-21, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37643972

ABSTRACT

The generation of food waste (FW) is increasing at an alarming rate, contributing to a total of 32% of all the waste produced globally. Anaerobic digestion (AD) is an effective method for dealing with organic wastes of various compositions, like FW. Waste valorization into value-added products has increased due to the conversion of FW into biogas using AD technology. A variety of pathways are adopted by microbes to avoid unfavorable conditions in AD, including competition between sulfate-reducing bacteria and methane (CH4)-forming bacteria. Anaerobic bacteria decompose organic matter to produce biogas, a digester gas. The composition depends on the type of raw material and the method by which the digestion process is conducted. Studies have shown that the biogas produced by AD contains 65-75% CH4 and 35-45% carbon dioxide (CO2). Methanothrix soehngenii and Methanosaeta concilii are examples of species that convert acetate to CH4 and CO2. Methanobacterium bryantii, Methanobacterium thermoautotrophicum, and Methanobrevibacter arboriphilus are examples of species that produce CH4 from hydrogen and CO2. Methanobacterium formicicum, Methanobrevibacter smithii, and Methanococcus voltae are examples of species that consume formate, hydrogen, and CO2 and produce CH4. The popularity of AD has increased for the development of biorefinery because it is seen as a more environmentally acceptable alternative in comparison to physico-chemical techniques for resource and energy recovery. The review examines the possibility of using accessible FW to produce important value-added products such as organic acids (acetate/butyrate), biopolymers, and other essential value-added products.


HighlightsPopulation growth globally increases the generation of FW.FW generation, recycling, and reuse have been discussed.Biogas and bio-fertilizers can be recovered from FW through AD.

3.
Microsc Res Tech ; 86(9): 1154-1168, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37421302

ABSTRACT

Silver nanoparticles (AgNPs) have emerged as highly effective antimicrobial agents against multidrug-resistant (MDR) pathogens. This study aims to employ green chemistry principles for AgNP synthesis involving phytochemical-rich extract from Glycyrrhiza glabra roots. The approach highlights using renewable feedstocks, safer chemicals, minimum byproducts, and process scale-up. The synthesis of AgNPs was assessed using a surface plasmon resonance band at 420 nm, and structural properties were characterized using TEM, x-ray diffraction, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy. This method enables the production of high-yield dispersions of AgNPs with desired physicochemical characteristics, including dark yellow solution, size (~20 nm), spherical to an oval shape, crystal structure, and stable colloidal properties. The antimicrobial activity of AgNPs was investigated against the MDR bacteria strains of gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli). This work reveals that the antimicrobial activity of AgNPs can be influenced by bacterial cell wall components. The results demonstrate the strong interaction between AgNPs and E. coli, exhibiting a dose-dependent antibacterial response. The green approach facilitated the safer, facile, and rapid synthesis of colloidal dispersions of AgNPs, providing a sustainable and promising alternative to conventional chemical and physical methods. Furthermore, the effect of AgNPs on various growth parameters, including seed germination, root and shoot elongation, and dry weight biomass, was assessed for mung bean seedlings. The results revealed phytostimulatory effects, suggesting the promising prospects of AgNPs in the nano-priming of agronomic seeds. RESEARCH HIGHLIGHTS: Glycyrrhiza glabra root extract enabled rapid, high-yield, and eco-friendly synthesis of silver nanoparticles (AgNPs). Spectrophotometric analysis examined the optical properties, scalability, and stability of AgNPs. Transmission electron microscopy provided insights into the size, shape, and dispersity of AgNPs. Scanning electron microscopy revealed significant damage to gram-negative bacterial cell morphology and membrane integrity. AgNPs were found to enhance seed germination, seedling growth, and biomass yield of Vigna radiata.


Subject(s)
Metal Nanoparticles , Silver , Silver/pharmacology , Silver/chemistry , Metal Nanoparticles/chemistry , Escherichia coli , Antioxidants/pharmacology , Enzyme Inhibitors/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Spectroscopy, Fourier Transform Infrared
4.
J Contam Hydrol ; 254: 104139, 2023 03.
Article in English | MEDLINE | ID: mdl-36642008

ABSTRACT

India faces major challenges related to fresh water supply and the reuse of treated wastewater is an important strategy to combat water scarcity. Wastewater in Gorakhpur, India, is treated by a decentralised wastewater treatment system (DEWATS) and the treated wastewater is reused in the rural area. This research provides important scientific data that ascertain the safety of wastewater reuse in this region. The physicochemical characteristics, including pigment, ionic strength, BOD, COD, TDS, TSS, salinity, total N, ammonium N, phenolics, heavy metals, and sulphate, of the inlet and outlet sewage water samples (SWWs) from a wastewater treatment facility was conducted. These parameters were found to be significantly over the national limit. The inlet and outlet samples were further characterised by using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR) and gas chromatography-mass spectrometry (GC-MS). SEM showed microstructure and the presence of various metals, polymers, and other co-pollutants in the samples and FT-IR confirmed the presence of aldehyde, hard liquor, and nitrogen molecules in the SWW's discharge. Many endocrine disruptors and potentially mutagenic chemical substances (e.g., Dodecane, Hexadecane, Octadecane etc.) were identified in the outlet SWW by the GC-MS analysis. Toxicity of the SWW was assessed via phytotoxicity assessment using Phaseolus mungo L. and histological and biochemical analyses of Heteropneustes fossilis in a 24-h exposure study. Results confirmed the wastewater was harmful and inhibited germination of P. mungo L. by >80% compared to the control, destroyed gill laminae and significantly increased oxidative stress (above 5% increase in catalase production) in H. fossilis. This work clearly demonstrated that the quality of the treated wastewater in Gorakhpur was poor and immediate action is needed before it can be discharged or reused.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Water Purification , Wastewater , Sewage/analysis , Environmental Pollutants/analysis , Spectroscopy, Fourier Transform Infrared , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Waste Disposal, Fluid
5.
Chemosphere ; 317: 137848, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36642147

ABSTRACT

Synthetic plastics, which are lightweight, durable, elastic, mouldable, cheap, and hydrophobic, were originally invented for human convenience. However, their non-biodegradability and continuous accumulation at an alarming rate as well as subsequent conversion into micro/nano plastic scale structures via mechanical and physio-chemical degradation pose significant threats to living beings, organisms, and the environment. Various minuscule forms of plastics detected in water, soil, and air are making their passage into living cells. High temperature and ambient humidity increase the degradation potential of plastic polymers photo-catalytically under sunlight or UV-B radiations. Microplastics (MPs) of polyethylene terephthalate, polyethylene, polystyrene, polypropylene, and polyvinyl chloride have been detected in bottled water. These microplastics are entering into the food chain cycle, causing serious harm to all living organisms. MPs entering into the food chain are usually inert in nature, possessing different sizes and shapes. Once they enter a cell or tissue, it causes mechanical damage, induces inflammation, disturbs metabolism, and even lead to necrosis. Various generation routes, types, impacts, identification, and treatment of microplastics entering the water bodies and getting associated with various pollutants are discussed in this review. It emphasizes potential detection techniques like pyrolysis, gas chromatography-mass spectrometry (GC-MS), micro-Raman spectroscopy, and fourier transform infrared spectroscopy (FT IR) spectroscopy for microplastics from water samples.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Humans , Drinking Water/analysis , Microplastics , Prevalence , Plastics , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis
6.
Environ Pollut ; 319: 120937, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36608723

ABSTRACT

Over the last several decades, extensive and inefficient use of contemporary technologies has resulted in substantial environmental pollution, predominantly caused by potentially hazardous elements (PTEs), like heavy metals that severely harm living species. To combat the presence of heavy metals (HMs) in the agrarian system, biochar becomes an attractive approach for stabilizing and limiting availability of HMs in soils due to its high surface area, porosity, pH, aromatic structure as well as several functional groups, which mostly rely on the feedstock and pyrolysis temperature. Additionally, agricultural waste-derived biochar is an effective management option to ensure carbon neutrality and circular economy while also addressing social and environmental concerns. Given these diverse parameters, the present systematic evaluation seeks to (i) ascertain the effectiveness of heavy metal immobilization by agro waste-derived biochar; (ii) examine the presence of biochar on soil physico-chemical, and thermal properties, along with microbial diversity; (iii) explore the underlying mechanisms responsible for the reduction in heavy metal concentration; and (iv) possibility of biochar implications to advance circular economy approach. The collection of more than 200 papers catalogues the immobilization efficiency of biochar in agricultural soil and its impacts on soil from multi-angle perspectives. The data gathered suggests that pristine biochar effectively reduced cationic heavy metals (Pb, Cd, Cu, Ni) and Cr mobilization and uptake by plants, whereas modified biochar effectively reduced As in soil and plant systems. However, the exact mechanism underlying is a complex biochar-soil interaction. In addition to successfully immobilizing heavy metals in the soil, the application of biochar improved soil fertility and increased agricultural productivity. However, the lack of knowledge on unfavorable impacts on the agricultural systems, along with discrepancies between the use of biochar and experimental conditions, impeded a thorough understanding on a deeper level.


Subject(s)
Metals, Heavy , Soil Pollutants , Ecosystem , Soil Pollutants/analysis , Metals, Heavy/analysis , Charcoal/chemistry , Soil/chemistry
7.
Environ Sci Pollut Res Int ; 30(14): 42367-42377, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36648727

ABSTRACT

A novel nanomaterial based on cationic surfactant-coated TiO2 nanoparticle (CCTN) was systematically fabricated in this work. Synthesized titania nanoparticles were thoroughly characterized by XRD, FT-IR, HR-TEM, TEM-EDX, SEM with EDX mapping, BET, and ζ potential measurements. The adsorption of cationic surfactant, cetyltrimethylammonium bromide (CTAB), on TiO2 was studied under various pH and ionic strength conditions. Adsorption of CTAB on TiO2 increased with ionic strength increment in the presence of hemimicelle monolayer structure, indicating that nonelectrostatic and electrostatic forces control CTAB uptake. CTAB adsorption isotherms on TiO2 were according to a two-step model. Potential application in pesticide removal of 2,4-dichorophenoxy acetic acid (2,4-D) using CCTN was also studied. Optimum parameters for 2,4-D treatment through adsorption technique were pH 5, adsorption time of 120 min, and CCTN dosage of 10 mg·mL-1. Very low 2,4-D removal efficiency using TiO2 without CTAB coating was found to be approximately 28.5% whereas the removal efficiency was up to about 90% by using CCTN under optimum conditions, and the maximum adsorption capacity of 12.79 mg·g-1 was found. Adsorption isotherms of 2,4-D on CCTN were more suitable with the Langmuir model than Freundlich. Adsorption mechanisms of 2,4-D on CCTN were mainly governed by Columbic attraction based on isotherms and surface charge changes.


Subject(s)
Herbicides , Nanoparticles , Cetrimonium , Adsorption , Spectroscopy, Fourier Transform Infrared , Surface-Active Agents/chemistry , Nanoparticles/chemistry , Phenoxyacetates , 2,4-Dichlorophenoxyacetic Acid , Kinetics
8.
Microbiol Res ; 267: 127273, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36481500

ABSTRACT

The study was aimed to improve the degradation of organic pollutants in municipal solid waste (MSW) through the bio-stimulation process. The results showed that the physico-chemical properties of MSW (control) had a high value of pH (9.2 ± 0.02); total suspended solids (TSS: 1547 ± 23 mg/kg-1), and total dissolved solids (TDS:76 ± 0.67 mg/kg-1). After the biostimulation process (biostimulated MSW), the physico-chemical parameters of MSW were reduced as pH (7.1 ± 0.01); TSS (41 ± 0.01 mg/kg-1), and TDS (789 ± 03 mg/kg-1). Furthermore, the major organic pollutants detected from MSW by gas chromatography-mass spectroscopy (GC-MS) analysis at different retention time (RT) were hexadecane (RT-8.79); pentadecane (RT-9.36); and hexasiloxane (RT-9.43) while these organic pollutants were degraded after the biostimulation process. The whole-genome metagenome sequencing size (%) analyses showed major groups of bacteria (40.82%) followed by fungi (0.05%), virus (0.0032%), and archaea (0.0442%) in MSW. The species richness and evenness of the microbial community were decreased substantially due to the biostimulation treatment. The total number of genes in the biostimulated MSW (PS-3_11267) sample were 465302 whereas the number of genes in the control MSW (PS-4_11268) sample were 256807. Furthermore, the biostimulated MSW (PS-3_11267) aligned the reads to bacteria (19502525), fungi (40030), virus (3339), and archaea (12759) genomes whereas the control sample (PS-4_11268) aligned the reads to bacteria (17057259), fungi (19148), virus (1335), and archaea (18447) genomes. Moreover, the relative abundance at genus level in biostimulated MSW (PS-3_11267) (Ochrobactrum and Phenylobacterium), phylum; (Proteobacteria and Actinobacteria), and species (Chthoniobacter flavus and Vulgatibacter incomptus) level was the most abundant. The results provided valuable information regarding the degradation of organic pollutants in MSW by microbial communities through biostimulation for the prevention of soil pollution and health protection.


Subject(s)
Endocrine Disruptors , Environmental Pollutants , Microbiota , Archaea/genetics , Bacteria/genetics , Endocrine Disruptors/analysis , Environmental Pollutants/analysis , Solid Waste/analysis
9.
Chemosphere ; 307(Pt 2): 135856, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35944682

ABSTRACT

The present study aims to investigate adsorption characteristics and mechanisms of Moringa (MO) seeds protein on nanosilica rice husk and their applications in removal of pharmaceutical residues including the fluoroquinolone antibiotic levofloxacin (LFX) and the nonsteroidal anti-inflammatory drug diclofenac (DCF) in aquatic environment. Molecular weight of MO protein was determined by gel-permeation chromatography (GPC) method while its amino acids were quantified by high performance liquid chromatography (HPLC). The number-(Mn) and weight-average molecular weights (Mw) of MO protein were 1.53 × 104 and 1.61 × 104 g/mol, respectively. Different effective conditions on adsorption protein on nanosilica including contact time, pH, adsorbent dosage, and ionic strength were systematically optimized and found to be 180 min, 10, 10 mg/mL and 1 mM KCl, respectively. The surface charge change by zeta potential, surface modification by Fourier-transform infrared spectroscopy (FT-IR) and adsorption isotherms demonstrated that protein adsorption on nanosilica was governed by both electrostatic and non-electrostatic interactions. Application of protein functionalized nanosilica (ProFNS) in LFX and DCF removal were also thoroughly studied. The selected conditions for LFX and DCF removal using ProFNS were 1 mM KCl for both LFX and DCF; pH 8 and pH 6; contact time 90 and 120 min, and adsorption dosage 10 and 5 mg/ml for LFX and DCF, respectively. Adsorption isotherms of protein on nanosilica as well as LFX and DCF onto ProFNS at different ionic strengths were reasonably fitted by the two-step model while a pseudo-second-order model could fit adsorption kinetic well. The removal of LFX and DCF using ProFNS significantly increased from 51.51% to 87.35%, and 7.97%-50.02%, respectively. High adsorption capacities of 75.75 mg/g for LFX and 59.52 mg/g for DCF, indicate that ProFNS is a great performance for pharmaceutical residues removal in water environment.


Subject(s)
Moringa , Oryza , Water Pollutants, Chemical , Adsorption , Amino Acids , Anti-Bacterial Agents , Anti-Inflammatory Agents , Diclofenac/chemistry , Hydrogen-Ion Concentration , Kinetics , Levofloxacin , Pharmaceutical Preparations , Seeds , Spectroscopy, Fourier Transform Infrared , Water , Water Pollutants, Chemical/chemistry
10.
Chemosphere ; 307(Pt 4): 136124, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35995194

ABSTRACT

The rapid growth of the industrial sector has expedited the accumulation of heavy metal(loid)s in the environment at hazardous levels. The elements such as arsenic, lead, mercury, cadmium and chromium are lethal in terms of toxicity with severe health impacts. With issues like water scarcity, limitations in wastewater treatment, and costs pertaining to detection in environmental matrices; their rapid and selective detection for reuse of effluents is of the utmost priority. Biosensors are the futuristic tool for the accurate qualitative and quantitative analysis of a specific analyte and integrate biotechnology, microelectronics and nanotechnology to fabricate a miniaturized device without compromising the sensitivity, specificity and accuracy. The characteristic features of supporting matrix largely affect the biosensing ability of the device and incorporation of highly sensitive and durable metal organic frameworks (MOFs) are reported to enhance the efficiency of advanced biosensors. Electrochemical biosensors are among the most widely developed biosensors for the detection of heavy metal(loids), while direct electron transfer approach from the recognition element to the electrode has been found to decrease the chances of interference. This review provides an insight into the recent progress in biosensor technologies for the detection of prevalent heavy metal(loid)s; using advanced support systems such as functional metal-based nanomaterials, carbon nanotubes, quantum dots, screen printed electrodes, glass beads etc. The review also delves critically in comparison of various techno-economic studies and the latest advances in biosensor technology.


Subject(s)
Arsenic , Biosensing Techniques , Mercury , Metal-Organic Frameworks , Metals, Heavy , Nanotubes, Carbon , Cadmium , Chromium , Metals, Heavy/analysis , Water
11.
Crit Rev Food Sci Nutr ; : 1-18, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35930295

ABSTRACT

Various studies have shown that the microbial proteins are often more stable than belongs to other sources like plant and animal origin. Hence, the interest in microbial enzymes has gained much attention due to many potential applications like bioenergy, biofuel production, biobleaching, bioconversion and so on. Additionally, recent trends revealed that the interest in isolating novel microbes from harsh environments have been the main focus of many scientists for various applications. Basically, industrially important enzymes can be categorized into mainly three groups: carbohydrases, proteases, and lipases. Among those, the enzymes especially carbohydrases involved in production of sugars. Carbohydrases include amylases, xylanases, pectinases, cellulases, chitinases, mannases, laccases, ligninases, lactase, glucanase, and glucose oxidase. Thus, here, an approach has been made to highlight five enzymes namely amylase, cellulase, laccase, pectinase, and xylanase from different sources with special emphasis on their properties, mechanism, applications, production optimization, purification, molecular approaches for its enhanced and stable production, and also biotechnological perspectives of its future development. Also, green and sustainable catalytic conversion strategies using nanoparticles of these enzymes have also been discussed. This review will provide insight into the carbohydrases importance and their usefulness that will help to the researchers working in this field.

12.
Chemosphere ; 306: 135538, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35792210

ABSTRACT

Heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) have become a major concern to human health and the environment due to rapid industrialization and urbanization. Traditional treatment measures for removing toxic substances from the environment have largely failed, and thus development and advancement in newer remediation techniques are of utmost importance. Rising environmental pollution with HMs and PAHs prompted the research on microbes and the development of genetically engineered microbes (GEMs) for reducing pollution via the bioremediation process. The enzymes produced from a variety of microbes can effectively treat a range of pollutants, but evolutionary trends revealed that various emerging pollutants are resistant to microbial or enzymatic degradation. Naturally, existing microbes can be engineered using various techniques including, gene engineering, directed evolution, protein engineering, media engineering, strain engineering, cell wall modifications, rationale hybrid design, and encapsulation or immobilization process. The immobilization of microbes and enzymes using a variety of nanomaterials, membranes, and supports with high specificity toward the emerging pollutants is also an effective strategy to capture and treat the pollutants. The current review focuses on successful bioremediation techniques and approaches that make use of GEMs or engineered enzymes. Such engineered microbes are more potent than natural strains and have greater degradative capacities, as well as rapid adaptation to various pollutants as substrates or co-metabolizers. The future for the implementation of genetic engineering to produce such organisms for the benefit of the environment andpublic health is indeed long and valuable.


Subject(s)
Environmental Pollutants , Hydrocarbons, Aromatic , Metals, Heavy , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Bacteria/genetics , Bacteria/metabolism , Biodegradation, Environmental , Environmental Pollutants/metabolism , Humans , Hydrocarbons, Aromatic/metabolism , Metals, Heavy/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Soil Pollutants/metabolism
13.
Arch Microbiol ; 204(7): 410, 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35729415

ABSTRACT

Contamination of the environment with heavy metals (HMs) has led to huge global environmental issues. Industrialization activities such as mining, manufacturing, and construction generate massive amounts of toxic waste, posing environmental risks. HMs soil pollution causes a variety of environmental issues and has a detrimental effect on both animals and plants. To remove HMs from the soil, traditional physico-chemical techniques such as immobilization, electro-remediation, stabilization, and chemical reduction are used. Moreover, the high energy, trained manpower, and hazardous chemicals required by these methods make them expensive and non-environmentally friendly. Bioremediation process, which involves microorganism-based and microorganism-associated-plant-based approaches, is an ecologically sound and cost-effective strategy for restoring HMs polluted soil. Microbes adjust their physiology to these conditions to live, which can involve significant variations in the expression of the genes. A set of genes are activated in response to toxic metals in microbes. They can also adapt by modifying their shape, fruiting bodies creating biofilms, filaments, or chemotactically migrating away from stress chemicals. Microbes including Bacillus sp., Pseudomonas sp., and Aspergillus sp. has been found to have high metals remediation and tolerance capacity of up to 98% whether isolated or in combination with plants like Helianthus annuus, Trifolium repens, and Vallisneria denseserrulata. Several of the regulatory systems that have been discovered are unique, but there is also a lot of "cross-talk" among networks. This review discusses the current state of knowledge regarding the microbial signaling responses, and the function of microbes in HMs stress resistance.


Subject(s)
Metals, Heavy , Soil Pollutants , Biodegradation, Environmental , Gene Expression , Metals, Heavy/analysis , Plants/metabolism , Soil/chemistry , Soil Pollutants/analysis
14.
Sci Total Environ ; 843: 156724, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35716753

ABSTRACT

WBE has been a monitoring system that can give purposeful and inclusive real-time assessments of civic society as well as environmental health. This concept review introduces WBE as a surveillance scheme and initial warning outbreaks of contagious diseases caused by harmful SARS-CoV-2 with pandemic potential. Examining biomarkers of contagious diseases as evidence in polluted water taken from wastewater treatment plants suggests that these systems can be examined to get epidemiological data for checking the transmission of infectious B.1.1.529 to different areas. Thereafter, various benefits of surveillance are provided to analyse health information and pinpoint different problems that may be occurring in the workstation. Surveillance is followed by intervention steps that improved the work environment and prevent further progression of the disease. This information will help to improve early detection strategies, designing a prevention strategy to reduce their spread, infection control and therapies, thus, strengthening our global preparedness to fight future epidemics. In the end, a comprehensive discussion on the remaining challenges and opportunities for epidemiology has been given for future research perspectives.


Subject(s)
COVID-19 , Communicable Diseases , COVID-19/epidemiology , Environmental Monitoring , Humans , Pandemics , SARS-CoV-2 , Wastewater
15.
Environ Res ; 212(Pt D): 113538, 2022 09.
Article in English | MEDLINE | ID: mdl-35640707

ABSTRACT

In this study, a bacterial carbonic anhydrase (CA) was purified from Corynebacterium flavescens for the CO2 conversion into CaCO3. The synthesized CaCO3 can be utilized in the papermaking industry as filler material, construction material and in steel industry. Herein, the CA was purified by using a Sephadex G-100 column chromatography having 29.00 kDa molecular mass in SDS-PAGE analysis. The purified CA showed an optimal temperature of 35 °C and pH 7.5. In addition, a kinetic study of CA using p-NPA as substrate showed Vmax (166.66 µmoL/mL/min), Km (5.12 mM), and Kcat (80.56 sec-1) using Lineweaver Burk plot. The major inhibitors of CA activity were Na2+, K+, Mn2+, and Al3+, whereas Zn2+ and Fe2+ slightly enhanced it. The purified CA showed a good efficacy to convert the CO2 into CaCO3 with a total conversion rate of 65.05 mg CaCO3/mg of protein. In silico analysis suggested that the purified CA has conserved Zn2+ coordinating residues such as His 111, His 113, and His 130 in the active site center. Further analysis of the CO2 binding site showed conserved residues such as Val 132, Val 142, Leu 196, Thr 197, and Val 205. However, a substitution has been observed where Trp 208 of its closest structural homolog T. ammonificans CA is replaced with Arg 207 of C. flavescens. The presence of a hydrophilic mutation in the CO2 binding hydrophobic region is a further subject of investigation.


Subject(s)
Carbonic Anhydrases , Calcium Carbonate , Carbon Dioxide/chemistry , Carbonic Anhydrases/chemistry , Carbonic Anhydrases/genetics , Carbonic Anhydrases/metabolism , Electrophoresis, Polyacrylamide Gel , Temperature
16.
Environ Pollut ; 306: 119372, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35533957

ABSTRACT

Multiwalled carbon nanotubes (MWCNTs) were oxidized using a mixture of H2SO4 and HNO3, and the oxidized MWCNTS were decorated with magnetite (Fe3O4). Finally, poly-N-isopropyl acrylamide-co-butyl acrylate (P-NIPAM) was added to obtain P-NIPAM/Fe/MWCNT nanocomposites. The nanosorbents were characterized by various techniques, including X-ray diffraction, transmission electron microscopy, scanning electron microscopy, thermogravimetric analysis, and Brunauer-Emmett-Teller analysis. The P-NIPAM/Fe/MWCNT nanocomposites exhibited increased surface hydrophobicity. Owing to their higher adsorption capacity, their kerosene removal efficiency was 95%; by contrast, the as-prepared, oxidized, and magnetite-decorated MWCNTs had removal efficiencies of 45%, 55%, and 68%, respectively. The P-NIPAM/Fe/MWCNT nanocomposites exhibited a sorbent capacity of 8.1 g/g for kerosene removal from water. The highest kerosene removal efficiency from water was obtained at a process time of 45 min, sorbent dose of 0.005 g, solution temperature of 40 °C, and pH 3.5. The P-NIPAM/Fe/MWCNTs showed excellent stability after four cycles of kerosene removal from water followed by regeneration. The reason may be the increase in the positive charge of the polymer at pH 3.5 and the increased adsorption affinity of the adsorbent toward the kerosene contaminant. The pseudo second-order model was found to be the most suitable model for studying the kinetics of the adsorption reaction.


Subject(s)
Nanocomposites , Nanotubes, Carbon , Water Pollutants, Chemical , Water Purification , Acrylic Resins , Adsorption , Ferrosoferric Oxide/chemistry , Hydrogen-Ion Concentration , Kerosene , Kinetics , Nanocomposites/chemistry , Nanotubes, Carbon/chemistry , Water/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods
17.
Chemosphere ; 299: 134752, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35513083

ABSTRACT

The present work reports the study on the green synthesis of hydroxyapatite (HAP) nanoadsorbents using Peltophorum pterocarpum pod extract. HAP nanoadsorbents were characterized by using FESEM, EDS, TEM, XRD, FTIR, XPS, and BET analyses. The results highlighted the high purity, needle-like aggregations, and crystalline nature of the prepared HAP nanoadsorbents. The surface area was determined as 40.04 m2/g possessing mesopores that can be related to the high adsorption efficiency of the HAP for the removal of a toxic dye, - Acid Blue 113 (AB 113) from water. Central Composite Design (CCD) was used for optimizing the adsorption process, which yielded 94.59% removal efficiency at the optimum conditions (dose: 0.5 g/L, AB 113 dye concentration: 25 ppm, agitation speed: 173 rpm, and adsorption time: 120 min). The adsorption kinetics followed the pseudo-second-order model (R2:0.9996) and the equilibrium data fitted well with the Freundlich isotherm (R2:0.9924). The thermodynamic parameters indicated that the adsorption of AB 113 was a spontaneous and exothermic process. The highest adsorption capacity was determined as 153.85 mg/g, which suggested the promising role of green HAP nanoadsorbents in environmental remediation applications.


Subject(s)
Durapatite , Water Pollutants, Chemical , Adsorption , Azo Compounds , Hydrogen-Ion Concentration , Kinetics , Plant Extracts , Water Pollutants, Chemical/analysis
18.
Environ Res ; 212(Pt B): 113178, 2022 09.
Article in English | MEDLINE | ID: mdl-35367427

ABSTRACT

In this study, activated carbon from corncobs was successfully synthesized by hydrothermal carbonization and hydrochemical activation at low temperatures, followed by pyrolysis. A developed method of hydrochemical activation of hydrochar that uses only small amounts of chemicals is a promising approach. After activation, the activator residues in the hydrothermal product can constantly act as a chemical activator during pyrolysis to form corncob-activated carbon (AHC-KOH), which had specific surface area of 965.028 m2/g and oxygenated functional groups of 0.3780 mmol/g, 31.67 and 4 times, respectively, of those of the inactivated sample. AHC-KOH was used to study the adsorption characteristics of methylene blue (MB). The MB adsorption efficiency of AHC-KOH was the highest at 489.560 mg/g, which was considerably higher than that of activated carbons produced from other biomasses. The isotherm equilibrium and adsorbent kinetics parameters of MB adsorption on AHC-KOH were also determined using the Langmuir isotherm model (R2 = 0.99) and pseudo-second-order kinetic model (R2 > 0.99). Thus, the results indicate that an inexpensive adsorbent produced from corncobs using the above method is a promising material for wastewater treatment.


Subject(s)
Water Pollutants, Chemical , Water Purification , Adsorption , Charcoal/chemistry , Kinetics , Methylene Blue/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Zea mays
19.
Environ Pollut ; 305: 119248, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35395353

ABSTRACT

The presence of heavy metals in municipal solid waste (MSW) is considered as prevalent global pollutants that cause serious risks to the environment and living organisms. Due to industrial and anthropogenic activities, the accumulation of heavy metals in the environmental matrices is increasing alarmingly. MSW causes several adverse environmental impacts, including greenhouse gas (GHG) emissions, river plastic accumulation, and other environmental pollution. Indigenous microorganisms (Pseudomonas, Flavobacterium, Bacillus, Nitrosomonas, etc.) with the help of new pathways and metabolic channels can offer the potential approaches for the treatment of pollutants. Microorganisms, that exhibit the ability of bioaccumulation and sequestration of metal ions in their intracellular spaces, can be utilized further for the cellular processes like enzyme signaling, catalysis, stabilizing charges on biomolecules, etc. Microbiological techniques for the treatment and remediation of heavy metals provide a new prospects for MSW management. This review provides the key insights on profiling of heavy metals in MSW, tolerance of microorganisms, and application of indigenous microorganisms in bioremediation. The literatures revealed that indigenous microbes can be exploited as potential agents for bioremediation.


Subject(s)
Environmental Pollutants , Metals, Heavy , Bioaccumulation , Biodegradation, Environmental , Environmental Pollutants/metabolism , Humans , Metals, Heavy/analysis , Plants/metabolism , Solid Waste/analysis
20.
Chemosphere ; 300: 134586, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35427655

ABSTRACT

Distillery wastewater has high biological and chemical oxygen demand and requires additional treatment before it can be safely discharged into receiving water. It is usually processed through a biomethanation digester and the end product is the post-methanated distillery effluent (PMDE). Research have shown that PMDE released by molasses-based distilleries is a hazardous effluent that can cause harm to the biota and the environment; it contains elevated amount of total dissolved solids (TDS), total suspended solids (TSS) and excess levels of persistent organic compounds (POPs), heavy metals, phenolic compounds, and salts. The practice of wastewater reuse for irrigation in many water scarce countries necessitates the proper treatment of PMDE before it is discharged into receiving water. Convention methods have been in practice for decades, but innovative technologies are needed to enhance the efficiency of PMDE treatment. Advance physical treatment such as membrane separation technology using graphene, ion-exchange and ultrafiltration membranes; chemical treatment such as advanced oxidation methods, electrocoagulation and photocatalytic technologies; biological treatment such as microbial and enzymatic treatment; and hybrid treatment such as microbial-fuel cell (MFC), genetically modified organisms (GMO) and constructed wetland technologies, are promising new methods to improve the quality of PMDE. This review provides insight into current accomplishments evaluates their suitability and discusses future developments in the detoxification of PMDE. The consolidated knowledge will help to develop a better management for the safe disposal and the reuse of PMDE wastewater.


Subject(s)
Environmental Pollutants , Industrial Waste , Biological Oxygen Demand Analysis , Waste Disposal, Fluid/methods , Wastewater , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...