Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 15(13)2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37447421

ABSTRACT

Frequent washing of textiles poses a serious hazard to the ecosystem, owing to the discharge of harmful effluents and the release of microfibers. On one side, the harmful effluents from detergents are endangering marine biota, while on the other end, microplastics are observed even in breastfeeding milk. This work proposes the development of sunlight-driven cleaning and antibacterial comfort fabrics by immobilizing functionalized Zn-doped TiO2 nanoparticles. The research was implemented to limit the use of various detergents and chemicals for stain removal. A facile sol-gel method has opted for the fabrication of pristine and Zn-doped TiO2 nanoparticles at three different mole percentages of Zn. The nanoparticles were successfully functionalized and immobilized on cotton fabric using silane coupling agents via pad-dry-cure treatment. As-obtained fabrics were characterized by their surface morphologies, availability of chemical functionalities, and crystallinity. The sunlight-assisted degradation potential of as-functionalized fabrics was evaluated against selected pollutants (eight commercial dyes). The 95-98% degradation of dyes from the functionalized fabric surface was achieved within 3 h of sunlight exposure, estimated by color strength analysis with an equivalent exposition of bactericidal activities. The treated fabrics also preserved their comfort and mechanical properties. The radical trapping experiment was performed to confirm the key radicals responsible for dye degradation, and h+ ions were found to be the most influencing species. The reaction pathway followed the first order kinetic model with rate constant values of 0.0087 min-1 and 0.0131 min-1 for MB and MO dyes, respectively.

2.
Membranes (Basel) ; 13(2)2023 Jan 22.
Article in English | MEDLINE | ID: mdl-36837647

ABSTRACT

Water is an important component of our life. However, the unavailability of fresh water and its contamination are emerging problems. The textile industries are the major suppliers of contamination of water, producing high concentrations of heavy metals and hazardous dyes posing serious health hazards. Several technologies for water purification are available in the market. Among them, the membrane technology is a highly advantageous and facile strategy to remediate wastewater. Herein, the distinguished combination of pore-forming agents, solvent, and nanoparticles has been used to achieve improved functioning of the polymeric composite membranes. To do so, graphene oxide (GO) was fabricated via Hummer's technique and GO functionalization using chloroacetic acid (c-GO) was performed. Thermoplastic polyurathane (TPU) membranes having different concentrations c-GO were made using the phase inversion technique. Scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FT-IR), and X-ray diffraction (XRD) was used to examine surface morphology, chemical functionalities on membranes surfaces, and crystallinity of membranes, respectively. The temperature-dependent behavior of c-GO composite membranes has been analyzed using DSC technique. The water contact angle measurements were performed for the estimation of hydrophilicity of the c-GO based TPU membrane. The improved water permeability of the composite membrane was observed with increasing the c-GO concentration in polymeric membranes. c-GO was observed as a potential candidate that enhanced membrane physicochemical properties. The proposed membranes can behave as efficient candidates in multiple domains of environmental remediation. Furthermore, the improved dye rejection characteristics of proposed composite membranes suggest that the membranes can be best suited for wastewater treatment as well.

3.
Chemosphere ; 310: 136900, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36265713

ABSTRACT

Carboxylated graphene oxide (C-GO) embedded in polysulfone (PSF) membrane composites were prepared with different wt. % (i.e., 0.2% M - 1, 0.3% M - 2, 0.4% M - 3, and 0.5% M - 4) using non-solvent induced phase separation (NIPS) method and ultrafiltration assembly was applied for the removal of dye effluents. The optimization of C-GO content into polymer matrix was found influencing factor in determining the composite membranes efficiency and application in various research fields. The membranes were characterized in terms of surface morphology (SEM), crystallinity (XRD), and functional groups identification (FTIR). The water permeability of the developed membranes was analyzed, and it is observed that increasing the content of C-GO in PSF membranes imposed a positive impact on permeation performance. M - 3 was found to be a potential candidate among all the membranes with a maximum water flux of about 183 LMH which is considerably higher as compared to the pristine PSF membrane's water flux (i.e., 27 LMH). Moreover, contact angle measurements of membranes were also checked to assess the hydrophilicity of PSF membranes. The results of contact angle also support the water permeability and efficient correlation was observed as contact angle decreases with increasing the content of C-GO. The minimum contact angle with excellent hydrophilicity was shown by the M - 3 membrane and it was found of about ±58.19° and this value is close to the M - 4 membrane having maximum C-GO content. The photocatalytic performance of the M - 3 membrane was checked under UV-254 nm using methylene blue dye and 97% dye removal was achieved within 220 min of reaction time under neutral pH conditions. The M - 3 membrane having C-GO content of 0.4% was found to be the best membrane with high pure water flux (183 LMH) and efficient dye rejection (82%) capability.


Subject(s)
Graphite , Membranes, Artificial , Polymers , Water
4.
Molecules ; 27(17)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36080334

ABSTRACT

This work reports the formation of a novel adsorbent, prepared by activating bentonite with cinnamic acid, which is highly efficient to remove dyes from wastewater. The adsorption efficiency of the cinnamic acid activated bentonite was compared with unmodified bentonite by removing methyl orange and rhodamine-B from polluted water. The characterization was performed through X-ray diffraction (XRD) Fourier transform infrared (FTIR) and scanning electron microscopy (SEM). The results indicated that acidic pH and low temperature were more suitable for the selected dyes adsorption. The analysis of the data was done by the Langmuir and Freundlich isotherms; the Freundlich isotherm showed more suitability for the equilibrium data. The data were further analyzed by pseudo-first and pseudo-second-order models to study adsorption kinetics. The results showed that methyl orange and rhodamine-B adsorption obeyed pseudo-order kinetics. The results obtained from this research suggested that acid activation of bentonite with cinnamic acid increased the surface area of the clay and hence enhanced its adsorption efficiency. The maximum adsorption efficiency for the removal of methyl orange and rhodamine-B was up to 99.3 mg g-1 and 44.7 mg g-1, respectively, at 25 °C. This research provides an economical modification technique of bentonite, which makes it cost-effective and a good adsorbent for wastewater treatment.


Subject(s)
Bentonite , Water Pollutants, Chemical , Adsorption , Azo Compounds , Bentonite/chemistry , Coloring Agents , Hydrogen-Ion Concentration , Kinetics , Rhodamines/chemistry , Spectroscopy, Fourier Transform Infrared , Thermodynamics , Wastewater , Water Pollutants, Chemical/chemistry
5.
Membranes (Basel) ; 12(6)2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35736337

ABSTRACT

Photocatalysis is an efficient and an eco-friendly way to eliminate organic pollutants from wastewater and filtration media. The major dilemma coupled with conventional membrane technology in wastewater remediation is fouling. In this study, the photocatalytic degradation potential of novel thermoplastic polyurethane (TPU) based NiO on aminated graphene oxide (NH2-GO) nanocomposite membranes was explored. The fabrication of TPU-NiO/NH2-GO membranes was achieved by the phase inversion method and analyzed for their performances. The membranes were effectively characterized in terms of surface morphology, functional group, and crystalline phase identification, using scanning electron microscopy, Fourier transformed infrared spectroscopy, and X-ray diffraction analysis, respectively. The prepared materials were investigated in terms of photocatalytic degradation potential against selected pollutants. Approximately 94% dye removal efficiency was observed under optimized conditions (i.e., reaction time = 180 min, pH 3-4, photocatalyst dose = 80 mg/100 mL, and oxidant dose = 10 mM). The optimized membranes possessed effective pure water flux and excellent dye rejection (approximately 94%) under 4 bar pressure. The nickel leaching in the treated wastewater sample was determined using inductively coupled plasma-optical emission spectrometry (ICP-OES). The obtained data was kinetically analyzed using first- and second-order reaction kinetic models. A first-order kinetic study was suited for the present study. Besides, the proposed membranes provided excellent photocatalytic ability up to six reusability cycles. The combination of TPU and NH2-GO provided effective strength to membranes and the immobilization of NiO nanoparticles improved the photocatalytic behavior.

6.
Environ Sci Pollut Res Int ; 29(6): 9203-9217, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34494196

ABSTRACT

This study set out to determine the photocatalytic degradation potential of polyaniline-based silver-doped zinc sulfide composite (PANI-Ag/ZnS) for effective degradation of methylene blue. The heterogeneous photocatalytic experiments were carried out by irradiating aqueous dye solutions with ultraviolet light (UV-254 nm). The catalysts (ZnS, Ag/ZnS, PANI-ZnS, and PANI-Ag/ZnS) were prepared successfully and characterized by Fourier Transforms Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and Energy-dispersive X-ray diffraction (EDX). Combined with density functional theory calculations, a set of calculations has been performed for optimization, computation, and accuracy of the structure. After the optimization, the equilibrium lattice were a=b= (0.54447 nm), in good agreement with experimental results (a=b=c=0.54093 nm). Fermi energy levels Ef, indicating Ag-doped in ZnS as the impurity acceptor and for better visible-light photo-catalysis, narrow bandgap, and acceptor states are beneficial. The optimization of effective parameters like pH, catalyst dose, oxidant dose, dye concentration, and reaction time was carried out. The best degradation efficiency (> 95%) of PANI-Ag/ZnS composite against methylene was achieved within 60 min of reaction time under optimized conditions. The optimized conditions were recoded as follows: pH = 7, catalysts dose = 30 mg/L, oxidant dose = 3 mM, and irradiation time = 60 min under UV-254 nm for all catalysts. The central composite design (CCD) under the Response Surface Methodology (RSM) was chosen as a statistical tool to obtain the correlation of influential parameters. Five successive reusability trials were carried out to check the stability of catalysts.


Subject(s)
Methylene Blue , Silver , Aniline Compounds , Photolysis , Sulfides , Zinc , Zinc Compounds
7.
Environ Res ; 206: 112280, 2022 04 15.
Article in English | MEDLINE | ID: mdl-34756916

ABSTRACT

Rapid industrialization is causing a serious threat for the environment. Therefore, this research was aimed in developing ceramic cobalt ferrite (CoFe2O4) nanocomposite photocatalyst coated with coal fly ash (CFA-CoFe2O4) using facile hydrothermal synthesis route and their applications against methylene blue. The pristine cobalt ferrite photocatalyst was also prepared, characterized, and applied for efficiency comparison. Prepared photocatalyst were characterized by X-ray diffraction (XRD), fourier transformed infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS). Optical response of catalysts was check using photoluminescence spectroscopy (PL). pH drift method was used for the surface charge characteristics of the material under acidic and basic conditions of solution pH. The photocatalytic degradation potential of all the materials were determined under ultra-violet irradiations. The influencing reaction parameters like pH, catalyst dose, oxidant dose, dye concentration, and irradiation time, were sequentially optimized to obtain best suited conditions. The 99% degradation of 10 ppm methylene blue was achieved within 60 min of reaction time under pH = 5 and 7, catalyst dose = 10 and 12 mg/100 mL, oxidant = 12 mM and 5 mM for cobalt ferrite and CFA-CoFe2O4 photocatalysts, respectively. Afterwards, the radical scavenging experiments were conducted to find out the effective radical scavengers (˙OH, h+, and e-) in photocatalytic degradation process. The kinetic study of the process was done by applying 1st order, 2nd order, and BMG models. Statistical assessment of interaction effect among experimental variables was achieved using response surface methodology (RSM).


Subject(s)
Methylene Blue , Nanocomposites , Catalysis , Coal , Coal Ash , Methylene Blue/chemistry , Nanocomposites/chemistry
8.
Nanotechnology ; 32(50)2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34544069

ABSTRACT

Visible active mixed metal ferrite intercalated semiconductor photocatalyst Mn0.6Zn0.4Fe2O4/g-C3N4was prepared via facile hydrothermal and liquid assembly method for methylene blue (MB) dye degradation. The prepared samples were well characterized in term of their functional groups, crystallinity, elemental analysis, surface morphology using Fourier transform infrared spectroscopy, x-ray diffraction spectroscopy, energy dispersive x-ray, and scanning electron microscopy, respectively. The optical response of catalysts was checked by estimating the energy band gap (Eg) of semiconductor photocatalysts using UV-vis spectroscopy. The photoluminescence spectroscopy was also performed to estimate the reduction in emission intensity after insertion of g-C3N4into Mn0.6Zn0.4Fe2O4.The novel composition of Mn0.6Zn0.4Fe2O4with g-C3N4,improved the optical response of pristine photocatalysts due to the reduction in the energy band gap and insertion of heterojunction. The surface area analysis of Mn0.6Zn0.4Fe2O4and Mn0.6Zn0.4Fe2O4/g-C3N4were acquired by Brunauer-Emmett-Teller. Point zero charge was also determined to observe the surface behavior of composite under different solution pH. Various parameters such as pH, catalyst dose, oxidant dose, irradiation time and initial dye concentration were optimized, and their effects were studied in photo-Fenton process. It was observed that 98% MB dye was degraded under optimized conditions (pH = 8, composite dose = 50 mg/100 ml, oxidant dose = 7 mM, initial dye conc. = 10 ppm, and irradiation time = 120 min). The results showed that when the ferrites of mixed metals (Mn, Zn) were used with g-C3N4their photocatalytic activity enhanced due to mutual effect of both mixed metals ferrite and g-C3N4, which is considerably higher than their individual effect already reported. Furthermore, the combined effect of independent variables was evaluated by response surface methodology.

9.
Nanotechnology ; 32(34)2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34015775

ABSTRACT

Demand for freshwater increases day by day as impurity increases due to the industrial, domestic and municipal waste in the water. Inappropriate disposal of coal fly ash (CFA) is not eco-friendly, therefore the need is to convert it into some beneficial material like zeolite. Zeolite-based composites with metal oxides show high cation interchange capacity, fast adsorption, and high efficiency for the removal of wastewater pollutants. In this research work, metal oxide along with zeolite (derived for CFA) was prepared. Metal oxide (WO3) and magnetite (Fe3O4) based zeolite composite was used adsorption enhanced photocatalytic degradation of rhodamine B dye. Ternary composite (zeolite/WO3/Fe3O4) was characterized using a scanning electron microscope, x-ray diffraction, Fourier transform infrared spectroscopy. The bandgap energy of composite was estimated using Tauc plot method from the data obtained after UV-visible spectroscopy. The behavior of composite under acidic and basic conditions was analyzed using pHpzcof the composite. Influencing parameters like pH, dye concentration, contact time, and catalyst dosage was optimized under ultraviolet irradiations (254 nm). The results show that maximum degradation was achieved with zeolite/WO3/Fe3O4composite under optimized conditions of pH = 7, catalyst dosage = 10 mg/100 ml, RhB concentration 10 ppm, and time 60 min. The first-order kinetic model was best fitted to the experimental data. RSM was used as a statistical tool to analyze the data.

10.
Plants (Basel) ; 10(1)2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33374688

ABSTRACT

Pesticides are one of the main organic pollutants as they are highly toxic and extensively used worldwide. The reclamation of wastewater containing pesticides is of utmost importance. For this purpose, GO-doped metal ferrites (GO-Fe3O4 and GO-CoFe2O4) were prepared and characterized using scanning electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopic techniques. Photocatalytic potentials of catalysts were investigated against acetamiprid's degradation. A detailed review of the parametric study revealed that efficiency of overall Fenton's process relies on the combined effects of contributing factors, i.e., pH, initial oxidant concentration, catalyst dose, contact time, and acetamiprid load. ~97 and ~90% degradation of the acetamiprid was achieved by GO-CoFe2O4 and GO-Fe3O4, respectively during the first hour under UV radiations at optimized reaction conditions. At optimized conditions (i.e., pH:3, [H2O2]: 14.5 mM (for Fe3O4, GO-Fe3O4, and GO-CoFe2O4) and 21.75 mM (for CoFe2O4), catalysts: 100 mgL-1, time: 60min) the catalysts exhibited excellent performance, with high degradation rate, magnetic power, easy recovery at the end, and efficient reusability (up to 5 cycles without any considerable loss in catalytic activity). A high magnetic character offers its easy separation from aqueous systems using an external magnet. Moreover, the combined effects of experimental variables were assessed simultaneously and justified using response surface methodology (RSM).

11.
Water Sci Technol ; 81(1): 178-189, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32293601

ABSTRACT

This study aims to explore the photocatalytic potential of graphene-oxide-based metal ferrites for the degradation of acetamiprid (an odorless neonicotinoid pesticide). Metal (Mn and Ni) ferrites (along with their graphene oxide composites) were prepared by the hydrothermal method while graphene oxide (GO) was synthesized using a modified Hummer's method. The composites were characterized by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. The photocatalysts were studied for their Fenton-like advanced oxidation process to degrade acetamiprid. The composites showed excellent activity against acetamiprid degradation (>90%) in 60 min under UV irradiation. The detailed optimization study was carried out to investigate the influential variables (such as pH, catalyst dose, pollutant concentration, irradiation time, oxidant dose, etc.) to achieve enhanced degradation efficiency. Moreover, the findings were endorsed by central composite design (CCD). It was concluded that degradation was enhanced in an appropriate combination of photocatalyst and hydrogen peroxide. The magnetic character of the metal ferrites and their composites played an important role in the easy separation and reusability of these materials. The present findings result in highly effective, easy to handle and stable heterogeneous photo-Fenton materials for wastewater remediation.


Subject(s)
Graphite , Ferric Compounds , Neonicotinoids
12.
Cureus ; 10(5): e2717, 2018 May 31.
Article in English | MEDLINE | ID: mdl-30079283

ABSTRACT

Primary thyroid lymphoma (PTL) is an uncommon malignancy of the thyroid gland, with most lymphomas of the thyroid being almost exclusively of the non-Hodgkin's B cell variety. PTL requires a prompt diagnosis because of its ability to cause progressive compression symptoms, and its unusual presentation can make the diagnosis very challenging. Herein, we present a case of PTL in a young woman with an uncommon initial presentation and discuss the complications she faced during the surgery, as well as postoperatively, due to the compression of the trachea by the thyroid mass.

SELECTION OF CITATIONS
SEARCH DETAIL
...