Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Med ; 29(12): 3077-3089, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37620627

ABSTRACT

Salivary gland cancers (SGCs) are rare, aggressive cancers without effective treatments when metastasized. We conducted a phase 2 trial evaluating nivolumab (nivo, anti-PD-1) and ipilimumab (ipi, anti-CTLA-4) in 64 patients with metastatic SGC enrolled in two histology-based cohorts (32 patients each): adenoid cystic carcinoma (ACC; cohort 1) and other SGCs (cohort 2). The primary efficacy endpoint (≥4 objective responses) was met in cohort 2 (5/32, 16%) but not in cohort 1 (2/32, 6%). Treatment safety/tolerability and progression-free survival (PFS) were secondary endpoints. Treatment-related adverse events grade ≥3 occurred in 24 of 64 (38%) patients across both cohorts, and median PFS was 4.4 months (95% confidence interval (CI): 2.4, 8.3) and 2.2 months (95% CI: 1.8, 5.3) for cohorts 1 and 2, respectively. We present whole-exome, RNA and T cell receptor (TCR) sequencing data from pre-treatment and on-treatment tumors and immune cell flow cytometry and TCR sequencing from peripheral blood at serial timepoints. Responding tumors universally demonstrated clonal expansion of pre-existing T cells and mutational contraction. Responding ACCs harbored neoantigens, including fusion-derived neoepitopes, that induced T cell responses ex vivo. This study shows that nivo+ipi has limited efficacy in ACC, albeit with infrequent, exceptional responses, and that it could be promising for non-ACC SGCs, particularly salivary duct carcinomas. ClinicalTrials.gov identifier: NCT03172624 .


Subject(s)
Carcinoma , Salivary Gland Neoplasms , Humans , Nivolumab/adverse effects , Ipilimumab/therapeutic use , Salivary Gland Neoplasms/drug therapy , Salivary Gland Neoplasms/genetics , Salivary Gland Neoplasms/chemically induced , Receptors, Antigen, T-Cell , Antineoplastic Combined Chemotherapy Protocols/adverse effects
2.
J Clin Oncol ; 40(36): 4240-4249, 2022 12 20.
Article in English | MEDLINE | ID: mdl-35867947

ABSTRACT

PURPOSE: The androgen receptor (AR) is expressed (+) in a subset of salivary gland cancers (SGCs). This phase II trial evaluated the efficacy of the antiandrogen enzalutamide in AR+ SGC. METHODS: Patients with locally advanced/unresectable or metastatic AR+ SGCs were enrolled. Enzalutamide (160 mg) was given orally once daily. The primary end point was the best overall response rate per RECIST v1.1 within eight cycles. Confirmed responses in ≥ 5 of 41 patients would be considered promising. Secondary end points were progression-free survival, overall survival, and safety. RESULTS: Forty-six patients were enrolled; 30 (65.2%) received prior systemic therapy, including 13 (28.3%) with AR-targeted drugs. Of seven (15.2%) partial responses (PRs), only two (4.3%) were confirmed per protocol and counted toward the primary end point. Twenty-four patients (52.2%) had stable disease; 15 (32.6%) had progression of disease as best response. Twenty-six patients (56.5%) experienced tumor regression in target lesions; 18 (39.1%) had partial response/stable disease ≥ 6 months. Tumor regressions were observed in female patients (5 of 6 [83.3%]) and those who received prior AR- (6 of 13 [46.2%]) or human epidermal growth factor receptor 2-targeted therapies (5 of 8 [62.5%]). Three patients remained on treatment at data cutoff (duration, 32.2-49.8 months). The median progression-free survival was 5.6 months (95% CI, 3.7 to 7.5); the median overall survival was 17.0 months (95% CI, 11.8 to 30.0). The most common adverse events were fatigue, hypertension, hot flashes, and weight loss. Total and free testosterone levels increased by a mean of 61.2% and 48.8%, respectively, after enzalutamide. CONCLUSION: Enzalutamide demonstrated limited activity in AR+ SGC, failing to meet protocol-defined success in part because of a lack of response durability. Strategies to enhance the efficacy of antiandrogen therapy are needed.


Subject(s)
Nitriles , Phenylthiohydantoin , Salivary Gland Neoplasms , Female , Humans , Male , Androgen Antagonists/adverse effects , Nitriles/adverse effects , Phenylthiohydantoin/adverse effects , Receptors, Androgen/metabolism , Salivary Gland Neoplasms/drug therapy , Salivary Gland Neoplasms/pathology
3.
Mol Cancer Res ; 20(1): 45-55, 2022 01.
Article in English | MEDLINE | ID: mdl-34635506

ABSTRACT

Targeted inhibition of BRAF V600E achieves tumor control in a subset of advanced thyroid tumors. Nearly all tumors develop resistance, and some have been observed to subsequently undergo dedifferentiation. The molecular alterations associated with thyroid cancer dedifferentiation in the setting of BRAF inhibition are unknown. We analyzed targeted next-generation sequencing data from 639 advanced, recurrent and/or metastatic thyroid carcinomas, including 15 tumors that were treated with BRAF inhibitor drugs and had tissue sampled during or posttreatment, 8 of which had matched pretherapy samples. Pre- and posttherapy tissues from one additional patient were profiled with whole-exome sequencing and RNA expression profiling. Mutations in genes comprising the SWI/SNF chromatin remodeling complex and the PI3K-AKT-mTOR, MAPK, and JAK-STAT pathways all increased in prevalence across more dedifferentiated thyroid cancer histologies. Of 7 thyroid cancers that dedifferentiated after BRAF inhibition, 6 had mutations in these pathways. These mutations were mostly absent from matched pretreatment samples and were rarely detected in tumors that did not dedifferentiate. Additional analyses in one of the vemurafenib-treated tumors before and after anaplastic transformation revealed the emergence of an oncogenic PIK3CA mutation, activation of ERK signaling, dedifferentiation, and development of an immunosuppressive tumor microenvironment. These findings validate earlier preclinical data implicating these genetic pathways in resistance to BRAF inhibitors, and suggest that genetic alterations mediating acquired drug resistance may also promote thyroid tumor dedifferentiation. IMPLICATIONS: The possibility that thyroid cancer dedifferentiation may be attributed to selective pressure applied by BRAF inhibitor-targeted therapy should be investigated further.


Subject(s)
Genomics/methods , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Thyroid Neoplasms/genetics , Transcriptome/genetics , Female , Humans , Male , Protein Kinase Inhibitors/pharmacology , Thyroid Neoplasms/pathology , Tumor Microenvironment
4.
Nat Genet ; 53(1): 11-15, 2021 01.
Article in English | MEDLINE | ID: mdl-33398197

ABSTRACT

In multiple cancer types, high tumor mutational burden (TMB) is associated with longer survival after treatment with immune checkpoint inhibitors (ICIs). The association of TMB with survival outside of the immunotherapy context is poorly understood. We analyzed 10,233 patients (80% non-ICI-treated, 20% ICI-treated) with 17 cancer types before/without ICI treatment or after ICI treatment. In non-ICI-treated patients, higher TMB (higher percentile within cancer type) was not associated with better prognosis; in fact, in many cancer types, higher TMB was associated with poorer survival, in contrast to ICI-treated patients in whom higher TMB was associated with longer survival.


Subject(s)
Mutation/genetics , Neoplasms/diagnosis , Neoplasms/genetics , Aged , Female , Humans , Male , Microsatellite Instability , Middle Aged , Prognosis , Survival Analysis
5.
Clin Cancer Res ; 26(12): 2859-2870, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32060100

ABSTRACT

PURPOSE: Salivary gland carcinomas (SGC) are rare, aggressive cancers with high rates of recurrence and distant metastasis. These factors, and a lack of active systemic therapies, contribute to poor clinical outcome. Response rates with immune checkpoint blockade have been low, although clinical data remain sparse. To improve the efficacy of therapies, a more comprehensive understanding of relevant molecular alterations and immunologic processes is needed. EXPERIMENTAL DESIGN: To characterize the immune microenvironment and neoantigen landscape of SGCs, we performed RNA sequencing (RNA-seq) in 76 tumors representing the three most lethal histologies: adenoid cystic carcinoma (ACC), myoepithelial carcinoma (MECA), and salivary duct carcinoma (SDC). We analyzed transcriptomic profiles, tumor-infiltrating immune cell populations, and measures of T-cell activation/dysfunction. In 37 cases also undergoing exome sequencing, we analyzed somatic mutations and neoantigens. RESULTS: SDCs exhibited high levels of immune infiltration, with corresponding higher levels of T-cell dysfunction, and higher mutational load. In contrast, ACCs were characterized by an immune-excluded microenvironment, the presence of M2-polarized macrophages and myeloid-derived suppressor cells, and very low mutational load. MECAs were more heterogeneous, with both immune-low and immune-high phenotypes represented. Across all SGCs, levels of immune infiltration were associated with mutation- and fusion-derived neoantigens, and with aggressive clinical behavior. CONCLUSIONS: These findings provide new insights into the immune microenvironment and neoantigen landscape of SGCs, showing that mechanisms of immune escape appear to differ by histology. These data nominate potential immunologic vulnerabilities and may help guide the next steps of investigation in precision immunotherapy for these difficult-to-treat cancers.


Subject(s)
Antigens, Neoplasm/immunology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/analysis , Lymphocytes, Tumor-Infiltrating/immunology , Mutation , Salivary Gland Neoplasms/immunology , Tumor Microenvironment/immunology , Adult , Aged , Aged, 80 and over , Female , Follow-Up Studies , Gene Expression Regulation, Neoplastic , Humans , Immunohistochemistry , Male , Middle Aged , Prognosis , Salivary Gland Neoplasms/genetics , Salivary Gland Neoplasms/metabolism , Salivary Gland Neoplasms/pathology , Sequence Analysis, RNA , Exome Sequencing
6.
Nat Med ; 25(5): 767-775, 2019 05.
Article in English | MEDLINE | ID: mdl-31011208

ABSTRACT

Anti-tumor immunity is driven by self versus non-self discrimination. Many immunotherapeutic approaches to cancer have taken advantage of tumor neoantigens derived from somatic mutations. Here, we demonstrate that gene fusions are a source of immunogenic neoantigens that can mediate responses to immunotherapy. We identified an exceptional responder with metastatic head and neck cancer who experienced a complete response to immune checkpoint inhibitor therapy, despite a low mutational load and minimal pre-treatment immune infiltration in the tumor. Using whole-genome sequencing and RNA sequencing, we identified a novel gene fusion and demonstrated that it produces a neoantigen that can specifically elicit a host cytotoxic T cell response. In a cohort of head and neck tumors with low mutation burden, minimal immune infiltration and prevalent gene fusions, we also identified gene fusion-derived neoantigens that generate cytotoxic T cell responses. Finally, analyzing additional datasets of fusion-positive cancers, including checkpoint-inhibitor-treated tumors, we found evidence of immune surveillance resulting in negative selective pressure against gene fusion-derived neoantigens. These findings highlight an important class of tumor-specific antigens and have implications for targeting gene fusion events in cancers that would otherwise be less poised for response to immunotherapy, including cancers with low mutational load and minimal immune infiltration.


Subject(s)
Antigens, Neoplasm/genetics , Immunotherapy/methods , Neoplasms/immunology , Neoplasms/therapy , T-Lymphocytes, Cytotoxic/immunology , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/immunology , Gene Fusion , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/therapy , Humans , NFI Transcription Factors/genetics , NFI Transcription Factors/immunology , Neoplasms/genetics , Nuclear Proteins/genetics , Nuclear Proteins/immunology , Oncogene Proteins/genetics , Oncogene Proteins/immunology , Poly-ADP-Ribose Binding Proteins/genetics , Poly-ADP-Ribose Binding Proteins/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Proto-Oncogene Proteins c-myb/genetics , Proto-Oncogene Proteins c-myb/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/therapy , Whole Genome Sequencing
7.
RNA Biol ; 15(2): 251-260, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29168431

ABSTRACT

Nucleolin (NCL) is an abundant stress-responsive, RNA-binding phosphoprotein that controls gene expression by regulating either mRNA stability and/or translation. NCL binds to the AU-rich element (ARE) in the 3'UTR of target mRNAs, mediates miRNA functions in the nearby target sequences, and regulates mRNA deadenylation. However, the mechanism by which NCL phosphorylation affects these functions and the identity of the deadenylase involved, remain largely unexplored. Earlier we demonstrated that NCL phosphorylation is vital for cell cycle progression and proliferation, whereas phosphorylation-deficient NCL at six consensus CK2 sites confers dominant-negative effect on proliferation by increasing p53 expression, possibly mimicking cellular DNA damage conditions. In this study, we show that NCL phosphorylation at those CK2 consensus sites in the N-terminus is necessary to induce deadenylation upon oncogenic stimuli and UV stress. NCL-WT, but not hypophosphorylated NCL-6/S*A, activates poly (A)-specific ribonuclease (PARN) deadenylase activity. We further demonstrate that NCL interacts directly with PARN, and under non-stress conditions also forms (a) complex (es) with factors that regulate deadenylation, such as p53 and the ARE-binding protein HuR. Upon UV stress, the interaction of hypophosphorylated NCL-6/S*A with these proteins is favored. As an RNA-binding protein, NCL interacts with PARN deadenylase substrates such as TP53 and BCL2 mRNAs, playing a role in their downregulation under non-stress conditions. For the first time, we show that NCL phosphorylation offers specificity to its protein-protein, protein-RNA interactions, resulting in the PARN deadenylase regulation, and hence gene expression, during cellular stress responses.


Subject(s)
Casein Kinase II/metabolism , Enzyme Activation , Exoribonucleases/metabolism , Phosphoproteins/metabolism , RNA-Binding Proteins/metabolism , Cell Line , Gene Expression Regulation/radiation effects , Humans , Phosphoproteins/chemistry , Phosphorylation , Proto-Oncogene Proteins c-bcl-2/genetics , RNA-Binding Proteins/chemistry , Stress, Physiological , Tumor Suppressor Protein p53/genetics , Ultraviolet Rays/adverse effects , Nucleolin
8.
Nat Commun ; 8(1): 1197, 2017 10 30.
Article in English | MEDLINE | ID: mdl-29084941

ABSTRACT

Myoepithelial carcinoma (MECA) is an aggressive salivary gland cancer with largely unknown genetic features. Here we comprehensively analyze molecular alterations in 40 MECAs using integrated genomic analyses. We identify a low mutational load, and high prevalence (70%) of oncogenic gene fusions. Most fusions involve the PLAG1 oncogene, which is associated with PLAG1 overexpression. We find FGFR1-PLAG1 in seven (18%) cases, and the novel TGFBR3-PLAG1 fusion in six (15%) cases. TGFBR3-PLAG1 promotes a tumorigenic phenotype in vitro, and is absent in 723 other salivary gland tumors. Other novel PLAG1 fusions include ND4-PLAG1; a fusion between mitochondrial and nuclear DNA. We also identify higher number of copy number alterations as a risk factor for recurrence, independent of tumor stage at diagnosis. Our findings indicate that MECA is a fusion-driven disease, nominate TGFBR3-PLAG1 as a hallmark of MECA, and provide a framework for future diagnostic and therapeutic research in this lethal cancer.


Subject(s)
Genomics/methods , Myoepithelioma/genetics , Oncogene Fusion/genetics , Oncogene Proteins, Fusion/genetics , Salivary Gland Neoplasms/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Cell Line, Tumor , DNA-Binding Proteins/genetics , Female , HEK293 Cells , Humans , In Situ Hybridization, Fluorescence , Male , Middle Aged , Mutation , Receptor, Fibroblast Growth Factor, Type 1/genetics , Sequence Analysis, DNA/methods , Young Adult
9.
PLoS One ; 9(10): e109858, 2014.
Article in English | MEDLINE | ID: mdl-25313645

ABSTRACT

Nucleolin (NCL) is a major nucleolar phosphoprotein that has pleiotropic effects on cell proliferation and is elevated in a variety of tumors. NCL is highly phosphorylated at the N-terminus by two major kinases: interphase casein kinase 2 (CK2) and mitotic cyclin-dependent kinase 1 (CDK1). Earlier we demonstrated that a NCL-mutant that is partly defective in undergoing phosphorylation by CK2 inhibits chromosomal replication through its interactions with Replication Protein A, mimicking the cellular response to DNA damage. We further delineated that the N-terminus of NCL associates with Hdm2, the most common E3 ubiquitin ligase of p53. We reported that NCL antagonizes Hdm2 to stabilize p53 and stimulates p53 transcriptional activity. Although NCL-phosphorylation by CK2 and ribosomal DNA transcription are closely coordinated during interphase, the role of NCL phosphorylation in regulating cell proliferation remains unexplored. We have therefore engineered unique human cells that specifically induce expression of NCL-wild type (WT) or a phosphorylation-deficient NCL-mutant, 6/S*A where all the six CK2 consensus serine sites residing in the N-terminus NCL were mutated to alanine. Here we show that this NCL-mutant is defective in undergoing phosphorylation by CK2. We also demonstrate that NCL-phosphorylation by CK2 is required through the S-phase progression in cell cycle and hence proliferation. Induced expression of NCL with mutated CK2 phosphorylation sites stabilizes p53, results in higher expression of Bcl2 (B-cell lymphoma 2) homology 3 (BH3)-only apoptotic markers and causes a dominant-negative effect on cell viability. Our unique cellular system thus provides the first evidential support to delineate phospho-specific functions of NCL on cell proliferation.


Subject(s)
Cell Proliferation , Phosphoproteins/genetics , RNA-Binding Proteins/genetics , Amino Acid Substitution , Apoptosis , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Casein Kinase II/metabolism , Cell Line, Tumor , Gene Expression , Genes, Dominant , Half-Life , Humans , Phosphoproteins/metabolism , Phosphorylation , Protein Processing, Post-Translational , Protein Stability , RNA-Binding Proteins/metabolism , Transcriptional Activation , Tumor Suppressor Protein p53/metabolism , Nucleolin
SELECTION OF CITATIONS
SEARCH DETAIL
...