Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 155(20): 204801, 2021 Nov 28.
Article in English | MEDLINE | ID: mdl-34852489

ABSTRACT

Community efforts in the computational molecular sciences (CMS) are evolving toward modular, open, and interoperable interfaces that work with existing community codes to provide more functionality and composability than could be achieved with a single program. The Quantum Chemistry Common Driver and Databases (QCDB) project provides such capability through an application programming interface (API) that facilitates interoperability across multiple quantum chemistry software packages. In tandem with the Molecular Sciences Software Institute and their Quantum Chemistry Archive ecosystem, the unique functionalities of several CMS programs are integrated, including CFOUR, GAMESS, NWChem, OpenMM, Psi4, Qcore, TeraChem, and Turbomole, to provide common computational functions, i.e., energy, gradient, and Hessian computations as well as molecular properties such as atomic charges and vibrational frequency analysis. Both standard users and power users benefit from adopting these APIs as they lower the language barrier of input styles and enable a standard layout of variables and data. These designs allow end-to-end interoperable programming of complex computations and provide best practices options by default.

2.
Article in English | MEDLINE | ID: mdl-34458687

ABSTRACT

Alchemical free energy calculations are a useful tool for predicting free energy differences associated with the transfer of molecules from one environment to another. The hallmark of these methods is the use of "bridging" potential energy functions representing alchemical intermediate states that cannot exist as real chemical species. The data collected from these bridging alchemical thermodynamic states allows the efficient computation of transfer free energies (or differences in transfer free energies) with orders of magnitude less simulation time than simulating the transfer process directly. While these methods are highly flexible, care must be taken in avoiding common pitfalls to ensure that computed free energy differences can be robust and reproducible for the chosen force field, and that appropriate corrections are included to permit direct comparison with experimental data. In this paper, we review current best practices for several popular application domains of alchemical free energy calculations performed with equilibrium simulations, in particular relative and absolute small molecule binding free energy calculations to biomolecular targets.

3.
Nat Commun ; 10(1): 2691, 2019 06 19.
Article in English | MEDLINE | ID: mdl-31217428

ABSTRACT

The MUSASHI (MSI) family of RNA binding proteins (MSI1 and MSI2) contribute to a wide spectrum of cancers including acute myeloid leukemia. We find that the small molecule Ro 08-2750 (Ro) binds directly and selectively to MSI2 and competes for its RNA binding in biochemical assays. Ro treatment in mouse and human myeloid leukemia cells results in an increase in differentiation and apoptosis, inhibition of known MSI-targets, and a shared global gene expression signature similar to shRNA depletion of MSI2. Ro demonstrates in vivo inhibition of c-MYC and reduces disease burden in a murine AML leukemia model. Thus, we identify a small molecule that targets MSI's oncogenic activity. Our study provides a framework for targeting RNA binding proteins in cancer.


Subject(s)
Gene Expression Regulation, Leukemic/drug effects , Leukemia, Experimental/drug therapy , Leukemia, Myeloid, Acute/drug therapy , Pteridines/pharmacology , RNA-Binding Proteins/antagonists & inhibitors , Animals , Apoptosis/drug effects , Flavins , Gene Expression Profiling , Humans , Leukemia, Experimental/blood , Leukemia, Myeloid, Acute/blood , Male , Mice , Primary Cell Culture , Proto-Oncogene Proteins c-myc/metabolism , Pteridines/therapeutic use , RNA/metabolism , RNA Recognition Motif/drug effects , RNA, Small Interfering/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Transcriptome/drug effects , Tumor Cells, Cultured
4.
J Chem Theory Comput ; 12(4): 1806-23, 2016 Apr 12.
Article in English | MEDLINE | ID: mdl-26849009

ABSTRACT

We show how thermodynamic properties of molecular models can be computed over a large, multidimensional parameter space by combining multistate reweighting analysis with a linear basis function approach. This approach reduces the computational cost to estimate thermodynamic properties from molecular simulations for over 130,000 tested parameter combinations from over 1000 CPU years to tens of CPU days. This speed increase is achieved primarily by computing the potential energy as a linear combination of basis functions, computed from either modified simulation code or as the difference of energy between two reference states, which can be done without any simulation code modification. The thermodynamic properties are then estimated with the Multistate Bennett Acceptance Ratio (MBAR) as a function of multiple model parameters without the need to define a priori how the states are connected by a pathway. Instead, we adaptively sample a set of points in parameter space to create mutual configuration space overlap. The existence of regions of poor configuration space overlap are detected by analyzing the eigenvalues of the sampled states' overlap matrix. The configuration space overlap to sampled states is monitored alongside the mean and maximum uncertainty to determine convergence, as neither the uncertainty or the configuration space overlap alone is a sufficient metric of convergence. This adaptive sampling scheme is demonstrated by estimating with high precision the solvation free energies of charged particles of Lennard-Jones plus Coulomb functional form with charges between -2 and +2 and generally physical values of σij and ϵij in TIP3P water. We also compute entropy, enthalpy, and radial distribution functions of arbitrary unsampled parameter combinations using only the data from these sampled states and use the estimates of free energies over the entire space to examine the deviation of atomistic simulations from the Born approximation to the solvation free energy.

5.
J Chem Theory Comput ; 11(6): 2536-49, 2015 Jun 09.
Article in English | MEDLINE | ID: mdl-26575553

ABSTRACT

We extend our previous linear basis function approach for alchemical free energy calculations to the insertion and deletion of charged particles in dense fluids. We compute a near optimal statistical path to introduce Coulombic interactions into various molecules in solution and find that this near optimal path is only marginally more efficient than simple linear coupling of electrostatics in all cases where a repulsive core is already present. We also explore the order in which nonbonded forces are coupled to the environment in alchemical transformations. We test two sets of Lennard-Jones basis functions, a Weeks-Chandler-Andersen (WCA) and a 12-6 decomposition of the repulsive and attractive forces turned on in sequence along with changes in charge, to determine a statistically optimized order in which forces should be coupled. The WCA decomposition has lower statistical uncertainty as coupling the attractive r(-6) basis function contributes non-negligible statistical error. In all cases, the charge should be coupled only after the repulsive core is fully coupled, and the WCA attractive portion can be coupled at any stage without significantly changing the efficiency. The statistical uncertainty of two of the basis function approaches with charged particles is nearly identical to the soft core approach for decoupling electrostatics, though the correlation times for sampling are often longer for a soft core electrostatics approach than the basis function approach. The basis function approach for introducing or removing molecules or functional groups thus represents a useful alternative to the soft core approach with a number of clear computational advantages.

6.
J Chem Theory Comput ; 10(3): 1128-49, 2014 Mar 11.
Article in English | MEDLINE | ID: mdl-26580188

ABSTRACT

We present a general approach to transform between molecular potential functions during free energy calculations using a variance minimized linear basis functional form. This approach splits the potential energy function into a sum of pairs of basis functions, which depend on coordinates, and 'alchemical' switches, which depend only on the coupling variable. The power of this approach is that, first, the calculation of the coupling parameter dependent terms is removed from inner loop force calculation routines, second, the flexibility in specifying basis functions and alchemical switches allows users to choose transformation pathways that maximize statistical efficiency, and third, it is possible to predict entirely in postprocessing, without any additional energy evaluations, the thermodynamic properties along any alchemical path with moderate overlap from an initial simulation that uses the same basis functions. This allows construction of optimized, minimum variance alchemical switches from a single simulation with fixed basis functions and trial alchemical switching functions. We describe how to construct these linear basis potentials for real molecular systems of different sizes and shapes, considering particularly the problems of eliminating singularities and minimizing variance of particle removal in dense fluids. The statistical error in free energy calculations using the optimized basis functions is lower than standard soft core models, and approach the minimum variance possible over all pair potentials. We recommend an optimized set of basis functions and alchemical switches for standard molecular free energy calculations.

SELECTION OF CITATIONS
SEARCH DETAIL
...