Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Vector Borne Zoonotic Dis ; 23(6): 316-323, 2023 06.
Article in English | MEDLINE | ID: mdl-37083463

ABSTRACT

Background: Understanding the geographic distribution of Rickettsia montanensis infections in Dermacentor variabilis is important for tick-borne disease management in the United States, as both a tick-borne agent of interest and a potential confounder in surveillance of other rickettsial diseases. Two previous studies modeled niche suitability for D. variabilis with and without R. montanensis, from 2002 to 2012, indicating that the D. variabilis niche overestimates the infected niche. This study updates these, adding data since 2012. Methods: Newer surveillance and testing data were used to update Species Distribution Models (SDMs) of D. variabilis, and R. montanensis-infected D. variabilis, in the United States. Using random forest models, found to perform best in previous work, we updated the SDMs and compared them with prior results. Warren's I niche overlap metric was used to compare between predicted suitability for all ticks and "R. montanensis-positive niche" models across datasets. Results: Warren's I indicated <2% change in predicted niche, and there was no change in order of importance of environmental predictors, for D. variabilis or R. montanensis-positive niche. The updated D. variabilis niche model overpredicted suitability compared with the updated R. montanensis-positive niche in key peripheral parts of the range, but slightly underpredicted through the northern and midwestern parts of the range. This reinforces previous findings of a more constrained R. montanensis-positive niche than predicted by D. variabilis records alone. Conclusions: The consistency of predicted niche suitability for D. variabilis in the United States, with the addition of nearly a decade of new data, corroborates this is a species with generalist habitat requirements. Yet a slight shift in updated niche distribution, even of low suitability, included more southern areas, pointing to a need for continued and extended monitoring and surveillance. This further underscores the importance of revisiting vector and vector-borne disease distribution maps.


Subject(s)
Dermacentor , Dog Diseases , Ixodidae , Rhipicephalus sanguineus , Rickettsia Infections , Rickettsia , Rickettsiaceae , Dogs , United States/epidemiology , Animals , Rickettsiales , Dermacentor/microbiology , Rickettsia Infections/epidemiology , Rickettsia Infections/veterinary
2.
bioRxiv ; 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36711596

ABSTRACT

Background: Understanding the geographic distribution of Rickettsia montanensis infections in Dermacentor variabilis is important for tick-borne disease management in the United States, as both a tick-borne agent of interest and a potential confounder in surveillance of other rickettsial diseases. Two previous studies modeled niche suitability for D. variabilis with and without R. montanensis , from 2002-2012, indicating that the D. variabilis niche overestimates the infected niche. This study updates these, adding data since 2012. Methods: Newer surveillance and testing data were used to update Species Distribution Models (SDMs) of D. variabilis , and R. montanensis infected D. variabilis , in the United States. Using random forest (RF) models, found to perform best in previous work, we updated the SDMs and compared them with prior results. Warren's I niche overlap metric was used to compare between predicted suitability for all ticks and 'pathogen positive niche' models across datasets. Results: Warren's I indicated <2% change in predicted niche, and there was no change in order of importance of environmental predictors, for D. variabilis or R. montanensis positive niche. The updated D. variabilis niche model overpredicted suitability compared to the updated R. montanensis positive niche in key peripheral parts of the range, but slightly underpredicted through the northern and midwestern parts of the range. This reinforces previous findings of a more constrained pathogen-positive niche than predicted by D. variabilis records alone. Conclusions: The consistency of predicted niche suitability for D. variabilis in the United States, with the addition of nearly a decade of new data, corroborates this is a species with generalist habitat requirements. Yet a slight shift in updated niche distribution, even of low suitability, included more southern areas, pointing to a need for continued and extended monitoring and surveillance. This further underscores the importance of revisiting vector and vector-borne disease distribution maps.

3.
Vector Borne Zoonotic Dis ; 21(11): 843-853, 2021 11.
Article in English | MEDLINE | ID: mdl-34463140

ABSTRACT

Three tick species that can transmit pathogen causing disease are commonly found parasitizing people and animals in the mid-Atlantic United States: the blacklegged tick (Ixodes scapularis Say), the American dog tick (Dermacentor variabilis [Say]), and the lone star tick (Amblyomma americanum [L.]) (Acari: Ixodidae). The potential risk of pathogen transmission from tick bites acquired at schools in tick-endemic areas is a concern, as school-aged children are a high-risk group for tick-borne disease. Integrated pest management (IPM) is often required in school districts, and continued tick range expansion and population growth will likely necessitate IPM strategies to manage ticks on school grounds. However, an often-overlooked step of tick management is monitoring and assessment of local tick species assemblages to inform the selection of control methodologies. The purpose of this study was to evaluate tick species presence, abundance, and distribution and the prevalence of tick-borne pathogens in both questing ticks and those removed from rodent hosts on six school properties in Maryland. Overall, there was extensive heterogeneity in tick species dominance, abundance, and evenness across the field sites. A. americanum and I. scapularis were found on all sites in all years. Overall, A. americanum was the dominant tick species. D. variabilis was collected in limited numbers. Several pathogens were found in both questing ticks and those removed from rodent hosts, although prevalence of infection was not consistent between years. Borrelia burgdorferi, Ehrlichia chaffeensis, Ehrlichia ewingii, and Ehrlichia "Panola Mountain" were identified in questing ticks, and B. burgdorferi and Borrelia miyamotoi were detected in trapped Peromyscus spp. mice. B. burgdorferi was the dominant pathogen detected. The impact of tick diversity on IPM of ticks is discussed.


Subject(s)
Amblyomma , Dermacentor , Ixodes , Tick-Borne Diseases/epidemiology , Animals , Mice , Mid-Atlantic Region/epidemiology , Nymph , Tick Control
4.
J Med Entomol ; 58(6): 2398-2405, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34007993

ABSTRACT

During September-December 2018, 25 live ticks were collected on-post at Fort Leavenworth, Kansas, in a home with a history of bat occupancy. Nine ticks were sent to the Army Public Health Center Tick-Borne Disease Laboratory and were identified as Carios kelleyi (Cooley and Kohls, 1941), a species that seldom bites humans but that may search for other sources of blood meals, including humans, when bats are removed from human dwellings. The ticks were tested for numerous agents of human disease. Rickettsia lusitaniae was identified by multilocus sequence typing to be present in two ticks, marking the first detection of this Rickettsia agent in the United States and in this species of tick. Two other Rickettsia spp. were also detected, including an endosymbiont previously associated with C. kelleyi and a possible novel Rickettsia species. The potential roles of C. kelleyi and bats in peridomestic Rickettsia transmission cycles warrant further investigation.


Subject(s)
Argasidae/microbiology , Rickettsia/isolation & purification , Tick Infestations/parasitology , Animals , Argasidae/growth & development , Female , Housing , Kansas , Male , Nymph/growth & development , Nymph/microbiology
5.
J Med Entomol ; 58(4): 1941-1947, 2021 07 16.
Article in English | MEDLINE | ID: mdl-33864374

ABSTRACT

Adult females and males of Ixodes affinis and Ixodes scapularis are illustrated by focus stacking image photography, and morphological character states are described that reliably differentiate the two species. In conjunction with other environmental cues, such as the questing phenology of adults, these characteristics will enable the rapid identification of adults of either sex along the southern Coastal Plain of the United States, where these species are sympatric.


Subject(s)
Ixodes , Sympatry , Animals , Female , Ixodes/anatomy & histology , Ixodes/classification , Male , Photography/methods , United States
6.
J Med Entomol ; 58(3): 1352-1362, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33511396

ABSTRACT

Lyme and other tick-borne diseases are increasing in the eastern United States and there is a lack of research on integrated strategies to control tick vectors. Here we present results of a study on tick-borne pathogens detected from tick vectors and rodent reservoirs from an ongoing 5-yr tick suppression study in the Lyme disease-endemic state of Maryland, where human-biting tick species, including Ixodes scapularis Say (Acari: Ixodidae) (the primary vector of Lyme disease spirochetes), are abundant. During the 2017 tick season, we collected 207 questing ticks and 602 ticks recovered from 327 mice (Peromyscus spp. (Rodentia: Cricetidae)), together with blood and ear tissue from the mice, at seven suburban parks in Howard County. Ticks were selectively tested for the presence of the causative agents of Lyme disease (Borrelia burgdorferi sensu lato [s.l.]), anaplasmosis (Anaplasma phagocytophilum), babesiosis (Babesia microti), ehrlichiosis (Ehrlichia ewingii, Ehrlichia chaffeensis, and 'Panola Mountain' Ehrlichia) and spotted fever group rickettsiosis (Rickettsia spp.). Peromyscus ear tissue and blood samples were tested for Bo. burgdorferi sensu stricto (s.s), A. phagocytophilum, Ba. microti, and Borrelia miyamotoi. We found 13.6% (15/110) of questing I. scapularis nymphs to be Bo. burgdorferi s.l. positive and 1.8% (2/110) were A. phagocytophilum positive among all sites. Borrelia burgdorferi s.s. was found in 71.1% (54/76) of I. scapularis nymphs removed from mice and 58.8% (194/330) of captured mice. Results from study on tick abundance and pathogen infection status in questing ticks, rodent reservoirs, and ticks feeding on Peromyscus spp. will aid efficacy evaluation of the integrated tick management measures being implemented.


Subject(s)
Ixodidae/microbiology , Ixodidae/physiology , Peromyscus , Rodent Diseases/epidemiology , Tick Infestations/veterinary , Animals , Female , Ixodidae/growth & development , Larva/growth & development , Larva/microbiology , Larva/physiology , Male , Maryland/epidemiology , Nymph/growth & development , Nymph/microbiology , Nymph/physiology , Population Surveillance , Prevalence , Rodent Diseases/microbiology , Rodent Diseases/parasitology , Tick Infestations/epidemiology , Tick Infestations/parasitology
7.
Ticks Tick Borne Dis ; 11(6): 101550, 2020 11.
Article in English | MEDLINE | ID: mdl-32993923

ABSTRACT

Small mammals are often parasitized by the immature stages of hard-bodied ticks (family Ixodidae) and may serve as reservoir hosts of tick-borne pathogens. Amblyomma maculatum, the Gulf Coast tick, is the primary vector of Rickettsia parkeri, the causative agent of R. parkeri rickettsiosis. This hard-bodied tick species is expanding its historical range from the Gulf Coast of the U.S. up the Mid-Atlantic coast. In Mid-Atlantic states, such as Virginia, R. parkeri prevalence is higher in these ticks than those found in its historical range. This high prevalence may be explained in part by small mammal populations. In this study, small mammals were trapped and checked for the presence of immature A. maculatum. The ticks as well as tissue samples from these mammals were tested for the presence of R. parkeri. This study found six rodent species acting as hosts to immature A. maculatum and three species that may play a role in the enzootic cycle of R. parkeri in Virginia.


Subject(s)
Amblyomma/physiology , Rickettsia Infections/veterinary , Rickettsia/isolation & purification , Rodent Diseases/epidemiology , Tick Infestations/veterinary , Animals , Disease Vectors , Female , Larva , Male , Nymph , Prevalence , Rickettsia Infections/epidemiology , Rickettsia Infections/microbiology , Rodent Diseases/microbiology , Rodent Diseases/parasitology , Tick Infestations/epidemiology , Tick Infestations/parasitology , Virginia/epidemiology
8.
J Med Entomol ; 55(3): 501-514, 2018 05 04.
Article in English | MEDLINE | ID: mdl-29394366

ABSTRACT

In the early 1980s, Ixodes spp. ticks were implicated as the key North American vectors of Borrelia burgdorferi (Johnson, Schmid, Hyde, Steigerwalt and Brenner) (Spirocheatales: Spirochaetaceae), the etiological agent of Lyme disease. Concurrently, other human-biting tick species were investigated as potential B. burgdorferi vectors. Rashes thought to be erythema migrans were observed in patients bitten by Amblyomma americanum (L.) (Acari: Ixodidae) ticks, and spirochetes were visualized in a small percentage of A. americanum using fluorescent antibody staining methods, sparking interest in this species as a candidate vector of B. burgdorferi. Using molecular methods, the spirochetes were subsequently described as Borrelia lonestari sp. nov. (Spirocheatales: Spirochaetaceae), a transovarially transmitted relapsing fever Borrelia of uncertain clinical significance. In total, 54 surveys from more than 35 research groups, involving more than 52,000 ticks, have revealed a low prevalence of B. lonestari, and scarce B. burgdorferi, in A. americanum. In Lyme disease-endemic areas, A. americanum commonly feeds on B. burgdorferi-infected hosts; the extremely low prevalence of B. burgdorferi in this tick results from a saliva barrier to acquiring infection from infected hosts. At least nine transmission experiments involving B. burgdorferi in A. americanum have failed to demonstrate vector competency. Advancements in molecular analysis strongly suggest that initial reports of B. burgdorferi in A. americanum across many states were misidentified B. lonestari, or DNA contamination, yet the early reports continue to be cited without regard to the later clarifying studies. In this article, the surveillance and vector competency studies of B. burgdorferi in A. americanum are reviewed, and we conclude that A. americanum is not a vector of B. burgdorferi.


Subject(s)
Arachnid Vectors/microbiology , Borrelia burgdorferi/physiology , Ixodidae/microbiology , Lyme Disease/transmission , Animals
9.
Ticks Tick Borne Dis ; 9(2): 188-195, 2018 02.
Article in English | MEDLINE | ID: mdl-28958704

ABSTRACT

The Gulf Coast tick Amblyomma maculatum Koch is increasingly relevant to medical and veterinary communities as human infection rates of Rickettsia parkeri rise, the risk of introduction of Ehrlichia ruminantium increases, and the range of this tick expands into the densely populated Mid-Atlantic region of the United States. We report on the results of five years of field surveillance to better describe the ecology of A. maculatum in newly established populations in southeastern Virginia. We document habitat preferences, host preferences, and the phenology of the adult human-biting life stage. We discuss key ecological factors needed for A. maculatum establishment and the influence of the successional process and anthropogenic activities on the persistence of A. maculatum populations in Virginia.


Subject(s)
Host-Parasite Interactions , Ixodidae/physiology , Life History Traits , Animals , Ixodidae/growth & development , Larva/growth & development , Larva/physiology , Nymph/growth & development , Nymph/physiology , Seasons , Virginia
10.
Ticks Tick Borne Dis ; 9(1): 109-119, 2018 01.
Article in English | MEDLINE | ID: mdl-29030315

ABSTRACT

The ixodid tick species Ixodes affinis is expanding its range northward, changing the tick community population dynamics in the Mid-Atlantic United States. We present five years of surveillance on newly established populations of I. affinis throughout southeastern Virginia and discuss the habitat and host associations of I. affinis in this northernmost extent of its range. We found that I. affinis populations tend to persist once they are established, and populations tend to increase as ecological succession progresses, provided a vegetated understory persists. Populations of I. affinis were never found in the smallest habitat fragments or in xeric dune habitats, and the highest densities of I. affinis were found in mixed pine-hardwood forests with an herbaceous understory. We also document several new mammalian hosts for I. affinis, including house mice (Mus musculus) and coyotes (Canis latrans) and discuss how these hosts may facilitate the continued dispersal of I. affinis and the maintenance of these newly established populations.


Subject(s)
Animal Distribution , Host-Parasite Interactions , Ixodes/physiology , Tick Infestations/epidemiology , Animals , Coyotes , Mice , Tick Infestations/parasitology , Virginia/epidemiology
12.
J Med Entomol ; 53(2): 441-5, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26586535

ABSTRACT

Ixodes affinis Neumann (Acari: Ixodidae) is a hard-bodied tick species distributed throughout much of the southeastern United States. Although I. affinis does not parasitize humans, it is a competent vector of Borrelia burgdorferi sensu stricto, the causative-agent of Lyme disease, and thus contributes to the enzootic maintenance of this pathogen. This study presents evidence of I. affinis parasitizing five new host passerine species. During 2012-2014, 1,888 birds were captured and examined for ticks, and 18 immature I. affinis were collected from 12 birds-six Carolina Wrens (Thyrothorus ludovicianus); two Brown Thrashers (Toxostoma rufum); and one American Robin (Turdus migratorius), Eastern Towhee (Pipilo erythrophthalmus), Northern Cardinal (Cardinalis cardinalis), and White-throated Sparrow (Zonotrichia albicollis). Of 15 larvae and 3 nymphs collected, one nymph tested positive for B. burgdorferi DNA. I. affinis was found co-feeding on birds with immature Amblyomma americanum (L.), Ixodes brunneus Koch, Ixodes dentatus Marx, Ixodes scapularis Say, and Haemaphysalis leporispalustris Packard. The results of this research provide a better understanding of I. affinis hosts and identify avian taxa that may play a role in the maintenance and dispersal of this tick species.


Subject(s)
Host-Parasite Interactions , Ixodes/physiology , Passeriformes/parasitology , Animals , Virginia
13.
Ticks Tick Borne Dis ; 6(4): 435-8, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25920376

ABSTRACT

Ticks are the most significant vectors of infectious diseases in the United States, inspiring many researchers to study aspects of their biology, ecology, and their effects on public health. However, regional differences in tick abundance and pathogen infection prevalence result in the inability to assume results from one area are relevant in another. Current local information on tick ranges, infection rates, and human cases is needed to assess tick-borne disease risk in any given region. The Mid-Atlantic Tick Summit III brought together over 100 area experts and researchers to share regional updates on ticks and their associated pathogens. We report some meeting highlights here. Regional meetings foster cross-disciplinary collaborations that benefit the community, and open novel lines of inquiry so that tick-bite risk can be reduced and tick-borne diseases can be treated effectively.


Subject(s)
Arachnid Vectors/physiology , Tick-Borne Diseases/transmission , Ticks/physiology , Animals , Humans , Information Dissemination , Mid-Atlantic Region , Public Health , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/parasitology
14.
J Clin Microbiol ; 53(5): 1697-704, 2015 May.
Article in English | MEDLINE | ID: mdl-25788545

ABSTRACT

The predominant human-biting tick throughout the southeastern United States is Amblyomma americanum. Its ability to transmit pathogens causing Lyme disease-like illnesses is a subject of ongoing controversy. Results of previous testing by the Department of Defense Human Tick Test Kit Program and other laboratories indicated that it is highly unlikely that A. americanum transmits any pathogen that causes Lyme disease. In contrast, a recent publication by Clark and colleagues (K. L. Clark, B. Leydet, and S. Hartman, Int. J. Med. Sci. 10:915-931, 2013) reported detection of Lyme group Borrelia in A. americanum using a nested-flagellin-gene PCR. We evaluated this assay by using it and other assays to test 1,097 A. americanum ticks collected from humans. Using the Clark assay, in most samples we observed nonspecific amplification and nonrepeatability of results on subsequent testing of samples. Lack of reaction specificity and repeatability is consistent with mispriming, likely due to high primer concentrations and low annealing temperatures in this protocol. In six suspect-positive samples, Borrelia lonestari was identified by sequencing of an independent gene region; this is not a Lyme group spirochete and is not considered zoonotic. B. burgdorferi was weakly amplified from one pool using some assays, but not others, and attempts to sequence the amplicon of this pool failed, as did attempts to amplify and sequence B. burgdorferi from the five individual samples comprising this pool. Therefore, B. burgdorferi was not confirmed in any sample. Our results do not support the hypothesis that A. americanum ticks are a vector for Lyme group Borrelia infections.


Subject(s)
Borrelia burgdorferi/isolation & purification , Ixodidae/microbiology , Animals , Entomology/methods , Female , Humans , Male , Molecular Diagnostic Techniques/methods , Polymerase Chain Reaction/methods , Reproducibility of Results , Sensitivity and Specificity , Southeastern United States
15.
Ticks Tick Borne Dis ; 5(1): 53-7, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24201057

ABSTRACT

The incidence of tick-borne rickettsial disease in the southeastern United States has been rising steadily through the past decade, and the range expansions of tick species and tick-borne infectious agents, new and old, has resulted in an unprecedented mix of vectors and pathogens. The results of an ongoing 4-year surveillance project describe the relative abundance of questing tick populations in southeastern Virginia. Since 2009, more than 66,000 questing ticks of 7 species have been collected from vegetation in a variety of habitats, with Amblyomma americanum constituting over 95% of ticks collected. Other species represented included Ixodes scapularis, Dermacentor variabilis, Amblyomma maculatum, Ixodes affinis, Haemaphysalis leporispalustris, and Ixodes brunneus. We found that 26.9-54.9% of A. americanum ticks tested were positive for Rickettsia amblyommii, a non-pathogenic symbiont of this tick species. We also found no evidence of R. rickettsii in D. variabilis ticks, although they did show low infection rates of R. montanensis (1.5-2.0%). Rickettsia parkeri and Candidatus R. andeanae were found in 41.8-55.7% and 0-1.5% A. maculatum ticks, respectively. The rate of R. parkeri in A. maculatum ticks is among the highest in the literature and has increased in the 2 years since R. parkeri and A. maculatum were first reported in southeastern Virginia. We conclude that tick populations in southeastern Virginia have recently undergone dramatic changes in species and abundance and that these populations support a variety of rickettsial agents with the potential for increased risk to human health.


Subject(s)
Arachnid Vectors/microbiology , Rickettsia/isolation & purification , Ticks/microbiology , Animals , Arachnid Vectors/classification , DNA, Bacterial/genetics , Humans , Male , Polymerase Chain Reaction , Population Surveillance , Rickettsia/classification , Rickettsia/genetics , Rickettsia Infections/epidemiology , Rickettsia Infections/microbiology , Ticks/classification , Virginia/epidemiology
17.
Emerg Infect Dis ; 17(5): 896-8, 2011 May.
Article in English | MEDLINE | ID: mdl-21529406

ABSTRACT

We report evidence that Amblyomma maculatum tick populations are well established in southeastern Virginia. We found that 43.1% of the adult Gulf Coast ticks collected in the summer of 2010 carried Rickettsia parkeri, suggesting that persons living in or visiting southeastern Virginia are at risk for infection with this pathogen.


Subject(s)
Rickettsia/physiology , Ticks/microbiology , Animals , Genes, Bacterial/genetics , Rickettsia/genetics , Virginia
SELECTION OF CITATIONS
SEARCH DETAIL
...