Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 30(58): 121306-121337, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37993649

ABSTRACT

This comprehensive paper conducts an in-depth review of personal exposure and air pollutant levels within the microenvironments of Asian city transportation. Our methodology involved a systematic analysis of an extensive body of literature from diverse sources, encompassing a substantial quantity of studies conducted across multiple Asian cities. The investigation scrutinizes exposure to various pollutants, including particulate matters (PM10, PM2.5, and PM1), carbon dioxide (CO2), formaldehyde (CH2O), and total volatile organic compounds (TVOC), during transportation modes such as car travel, bus commuting, walking, and train rides. Notably, our review reveals a predominant focus on PM2.5, followed by PM10, PM1, CO2, and TVOC, with limited attention given to CH2O exposure. Across the spectrum of Asian cities and transportation modes, exposure concentrations exhibited considerable variability, a phenomenon attributed to a multitude of factors. Primary sources of exposure encompass motor vehicle emissions, traffic dynamics, road dust, and open bus doors. Furthermore, our findings illuminate the influence of external environments, particularly in proximity to train stations, on pollutant levels inside trains. Crucial factors affecting exposure encompass ventilation conditions, travel-specific variables, seat locations, vehicle types, and meteorological influences. The culmination of this rigorous review underscores the need for standardized measurements, enhanced ventilation systems, air filtration mechanisms, the adoption of clean energy sources, and comprehensive public education initiatives aimed at reducing pollutant exposure within city transportation microenvironments. Importantly, our study contributes to the growing body of knowledge surrounding this subject, offering valuable insights for policymakers and researchers dedicated to advancing air quality standards and safeguarding public health.


Subject(s)
Air Pollutants , Air Pollution , Carbon Dioxide/analysis , Air Pollutants/analysis , Particulate Matter/analysis , Air Pollution/analysis , Vehicle Emissions/analysis , Transportation , Environmental Exposure/analysis , Environmental Monitoring/methods
2.
Sci Total Environ ; 901: 166430, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-37607626

ABSTRACT

Climate change is thought to influence the composition of atmospheric air, but little is known about the direct relationship between these variables, especially in a hot tropical climate like that of Malaysia. This work summarizes and analyzes the climate state and air quality of Peninsular Malaysia based on selected ground-based observations of the temperature, precipitation, relative humidity, wind speed, wind direction and concentrations of PM10, O3, CO, NO2, and SO2 over the last 20 years (2000-2019). The relationship between the climate state and air quality is analyzed using the Pearson correlation and canonical correlation analysis (CCA) methods is employed to predict the degree of change in the future air quality under different warming scenarios. It is found that the Peninsular Malaysia mainly experienced strong precipitation in the central and mountainous regions, while air pollutants are primarily concentrated in densely populated areas. Throughout the period of study (interannual, monthly, and diurnal time series analyses), Peninsular Malaysia became warmer and drier, with a significant increase in temperature (+4.2 %), decrease in the relative humidity (-4.5 %), and greater fluctuation in precipitation amount. The pollution conditions have worsened; there has been an increase in the PM10 (+16.4 %), O3 (+39.5 %), and NO2 (+2.1 %) concentration over the last 20 years. However, the amount of SO2 (-53.6 %) and CO (-20.6 %) decreased significantly. The analysis of the monthly variation shows a strong bimodality of the PM10 and O3 concentrations that corresponds to the monsoon transition. Intensive diurnal fluctuations and correlations are observed for all the variables in this study. According to the CCA, the air quality factors are strongly correlated with meteorological factors; in particular, the CO, O3, and PM10 concentrations interact strongly with the air temperature. These findings show that the future air quality in Peninsular Malaysia has high possibility to deteriorate under warming condition.

3.
Mar Drugs ; 19(6)2021 May 30.
Article in English | MEDLINE | ID: mdl-34070821

ABSTRACT

Air pollution has recently become a subject of increasing concern in many parts of the world. The World Health Organization (WHO) estimated that nearly 4.2 million early deaths are due to exposure to fine particles in polluted air, which causes multiple respiratory diseases. Algae, as a natural product, can be an alternative treatment due to potential biofunctional properties and advantages. This systematic review aims to summarize and evaluate the evidence of metabolites derived from algae as potential anti-inflammatory agents against respiratory disorders induced by atmospheric particulate matter (PM). Databases such as Scopus, Web of Science, and PubMed were systematically searched for relevant published full articles from 2016 to 2020. The main key search terms were limited to "algae", "anti-inflammation", and "air pollutant". The search activity resulted in the retrieval of a total of 36 publications. Nine publications are eligible for inclusion in this systematic review. A total of four brown algae (Ecklonia cava, Ishige okamurae, Sargassum binderi and Sargassum horneri) with phytosterol, polysaccharides and polyphenols were reported in the nine studies. The review sheds light on the pathways of particulate matter travelling into respiratory systems and causing inflammation, and on the mechanisms of actions of algae in inhibiting inflammation. Limitations and future directions are also discussed. More research is needed to investigate the potential of algae as anti-inflammatory agents against PM in in vivo and in vitro experimental models, as well as clinically.


Subject(s)
Air Pollutants/adverse effects , Anti-Inflammatory Agents/therapeutic use , Particulate Matter/adverse effects , Phaeophyceae , Respiratory Tract Diseases/drug therapy , Animals , Humans
4.
Environ Sci Pollut Res Int ; 28(38): 53478-53492, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34036501

ABSTRACT

The COVID-19 pandemic has plunged the world into uncharted territory, leaving people feeling helpless in the face of an invisible threat of unknown duration that could adversely impact the national economic growths. According to the World Health Organization (WHO), the SARS-CoV-2 spreads primarily through droplets of saliva or discharge from the mouth or nose when an infected person coughs or sneezes. However, the transmission of the SARS-CoV-2 through aerosols remains unclear. In this study, computational fluid dynamic (CFD) is used to complement the investigation of the SARS-CoV-2 transmission through aerosol. The Lagrangian particle tracking method was used to analyze the dispersion of the exhaled particles from a SARS-CoV-2-positive patient under different exhale activities and different flow rates of chilled (cooling) air supply. Air sampling of the SARS-CoV-2 patient ward was conducted for 48-h measurement intervals to collect the indoor air sample for particulate with diameter less than 2.5 µm. Then, the reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) was conducted to analyze the collected air sample. The simulation demonstrated that the aerosol transmission of the SARS-CoV-2 virus in an enclosed room (such as a hospital ward) is highly possible.


Subject(s)
COVID-19 , SARS-CoV-2 , Aerosols , Hospitals , Humans , Pandemics
5.
Sci Rep ; 11(1): 2508, 2021 01 28.
Article in English | MEDLINE | ID: mdl-33510270

ABSTRACT

The rapid spread of the SARS-CoV-2 in the COVID-19 pandemic had raised questions on the route of transmission of this disease. Initial understanding was that transmission originated from respiratory droplets from an infected host to a susceptible host. However, indirect contact transmission of viable virus by fomites and through aerosols has also been suggested. Herein, we report the involvement of fine indoor air particulates with a diameter of ≤ 2.5 µm (PM2.5) as the virus's transport agent. PM2.5 was collected over four weeks during 48-h measurement intervals in four separate hospital wards containing different infected clusters in a teaching hospital in Kuala Lumpur, Malaysia. Our results indicated the highest SARS-CoV-2 RNA on PM2.5 in the ward with number of occupants. We suggest a link between the virus-laden PM2.5 and the ward's design. Patients' symptoms and numbers influence the number of airborne SARS-CoV-2 RNA with PM2.5 in an enclosed environment.


Subject(s)
COVID-19/transmission , Environmental Monitoring/methods , SARS-CoV-2/chemistry , Aerosols/analysis , Aerosols/chemistry , Air Microbiology , Air Pollution, Indoor , COVID-19/epidemiology , COVID-19/metabolism , COVID-19/virology , Fomites/microbiology , Fomites/statistics & numerical data , Hospitals , Humans , Malaysia/epidemiology , Pandemics , Particulate Matter/analysis , RNA, Viral
6.
Environ Monit Assess ; 192(6): 342, 2020 May 08.
Article in English | MEDLINE | ID: mdl-32382809

ABSTRACT

Benzene, toluene, ethylbenzene and xylenes (BTEX) are well known hazardous volatile organic compounds (VOCs) due to their human health risks and photochemical effects. The main objective of this study was to estimate BTEX levels and evaluate interspecies ratios and ozone formation potentials (OFP) in the ambient air of urban Kuala Lumpur (KL) based on a passive sampling method with a Tenax® GR adsorbent tube. Analysis of BTEX was performed using a thermal desorption (TD)-gas chromatography mass spectrometer (GCMS). OFP was calculated based on the Maximum Incremental Reactivity (MIR). Results from this study showed that the average total BTEX during the sampling period was 66.06 ± 2.39 µg/m3. Toluene (27.70 ± 0.97 µg/m3) was the highest, followed by m,p-xylene (13.87 ± 0.36 µg/m3), o-xylene (11.49 ± 0.39 µg/m3), ethylbenzene (8.46 ± 0.34 µg/m3) and benzene (3.86 ± 0.31 µg/m3). The ratio of toluene to benzene (T:B) is > 7, suggesting that VOCs in the Kuala Lumpur urban environment are influenced by vehicle emissions and other anthropogenic sources. The average of ozone formation potential (OFP) value from BTEX was 278.42 ± 74.64 µg/m3 with toluene and xylenes being the major contributors to OFP. This study also indicated that the average of benzene concentration in KL was slightly lower than the European Union (EU)-recommended health limit value for benzene of 5 µg/m3 annual exposure.


Subject(s)
Air Pollutants , Environmental Monitoring , Benzene , Benzene Derivatives , Humans , Toluene , Xylenes
7.
Sci Total Environ ; 730: 139091, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32413602

ABSTRACT

The Southeast Asian (SEA) region is no stranger to forest fires - the region has been suffering from severe air pollution (known locally as 'haze') as a result of these fires, for decades. The fires in SEA region are caused by a combination of natural (the El Niño weather pattern) and manmade (slash-and-burn and land clearing for plantations) factors. These fires cause the emissions of toxic aerosols and pollutants that can affect millions of people in the region. Thus, this study aims to identify the impact of the SEA haze on the Southern region of the Malaysian Peninsula and Borneo region of East Malaysia using the entire air quality observation data at surface level in 2015. Overall, the concentration of PM10 was about two-fold higher during the haze period compared to non-haze period. The concentrations of CO, flux of CO and flux of BC were aligned with PM10 during the entire observation period. The wind field and cluster of trajectory indicated that the Southern Malaysian Peninsula and Borneo were influenced mainly from the wildfires and the combustion of peat soil in the Indonesian Borneo. This study finds that wildfires from Borneo impacted the Southern Malaysian Borneo more seriously than that from Sumatra region.

8.
Sci Total Environ ; 650(Pt 1): 1195-1206, 2019 Feb 10.
Article in English | MEDLINE | ID: mdl-30308807

ABSTRACT

Equatorial warming conditions in urban areas can influence the particle number concentrations (PNCs), but studies assessing such factors are limited. The aim of this study was to evaluate the level of size-resolved PNCs, their potential deposition rate in the human respiratory system, and probable local and transboundary inputs of PNCs in Kuala Lumpur. Particle size distributions of a 0.34 to 9.02 µm optical-equivalent size range were monitored at a frequency of 60 s between December 2016 and January 2017 using an optical-based compact scanning mobility particle sizer (SMPS). Diurnal and correlation analysis showed that traffic emissions and meteorological confounding factors were potential driving factors for changes in the PNCs (Dp ≤1 µm) at the modeling site. Trajectory modeling showed that a PNC <100/cm3 was influenced mainly by Indo-China region air masses. On the other hand, a PNC >100/cm3 was influenced by air masses originating from the Indian Ocean and Indochina regions. Receptor models extracted five potential sources of PNCs: industrial emissions, transportation, aged traffic emissions, miscellaneous sources, and a source of secondary origin coupled with meteorological factors. A respiratory deposition model for male and female receptors predicted that the deposition flux of PM1 (particle mass ≤1 µm) into the alveolar (AL) region was higher (0.30 and 0.25 µg/h, respectively) than the upper airway (UA) (0.29 and 0.24 µg/h, respectively) and tracheobronchial (TB) regions (0.02 µg/h for each). However, the PM2.5 deposition flux was higher in the UA (2.02 and 1.68 µg/h, respectively) than in the TB (0.18 and 0.15 µg/h, respectively) and the AL regions (1.09 and 0.91 µg/h, respectively); a similar pattern was also observed for PM10.


Subject(s)
Air Pollutants/analysis , Air Pollution/statistics & numerical data , Environmental Monitoring , Inhalation Exposure/statistics & numerical data , Particulate Matter/analysis , Cities , Humans , Malaysia , Meteorological Concepts , Respiratory System
9.
Sci Total Environ ; 613-614: 1401-1416, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29898507

ABSTRACT

Air pollution can be detected through rainwater composition. In this study, long-term measurements (2000-2014) of wet deposition were made to evaluate the physicochemical interaction and the potential sources of pollution due to changes of land use. The rainwater samples were obtained from an urban site in Kuala Lumpur and a highland-rural site in the middle of Peninsular Malaysia. The compositions of rainwater were obtained from the Malaysian Meteorological Department. The results showed that the urban site experienced more acidity in rainwater (avg=277mm, range of 13.8 to 841mm; pH=4.37) than the rural background site (avg=245mm, range of 2.90 to 598mm; pH=4.97) due to higher anthropogenic input of acid precursors. The enrichment factor (EF) analysis showed that at both sites, SO42-, Ca2+ and K+ were less sensitive to seawater but were greatly influenced by soil dust. NH4+ and Ca2+ can neutralise a larger fraction of the available acid ions in the rainwater at the urban and rural background sites. However, acidifying potential was dominant at urban site compared to rural site. Source-receptor relationship via positive matrix factorisation (PMF 5.0) revealed four similar major sources at both sites with a large variation of the contribution proportions. For urban, the major sources influence on the rainwater chemistry were in the order of secondary nitrates and sulfates>ammonium-rich/agricultural farming>soil components>marine sea salt and biomass burning, while at the background site the order was secondary nitrates and sulfates>marine sea salt and biomass burning=soil components>ammonia-rich/agricultural farming. The long-term trend showed that anthropogenic activities and land use changes have greatly altered the rainwater compositions in the urban environment while the seasonality strongly affected the contribution of sources in the background environment.

10.
Environ Sci Pollut Res Int ; 25(3): 2194-2210, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29116536

ABSTRACT

The Antarctic continent is known to be an unpopulated region due to its extreme weather and climate conditions. However, the air quality over this continent can be affected by long-lived anthropogenic pollutants from the mainland. The Argentinian region of Ushuaia is often the main source area of accumulated hazardous gases over the Antarctic Peninsula. The main objective of this study is to report the first in situ observations yet known of surface ozone (O3) over Ushuaia, the Drake Passage, and Coastal Antarctic Peninsula (CAP) on board the RV Australis during the Malaysian Antarctic Scientific Expedition Cruise 2016 (MASEC'16). Hourly O3 data was measured continuously for 23 days using an EcoTech O3 analyzer. To understand more about the distribution of surface O3 over the Antarctic, we present the spatial and temporal of surface O3 of long-term data (2009-2015) obtained online from the World Meteorology Organization of World Data Centre for greenhouse gases (WMO WDCGG). Furthermore, surface O3 satellite data from the free online NOAA-Atmospheric Infrared Sounder (AIRS) database and online data assimilation from the European Centre for Medium-Range Weather Forecasts (ECMWF)-Monitoring Atmospheric Composition and Climate (MACC) were used. The data from both online products are compared to document the data sets and to give an indication of its quality towards in situ data. Finally, we used past carbon monoxide (CO) data as a proxy of surface O3 formation over Ushuaia and the Antarctic region. Our key findings were that the surface O3 mixing ratio during MASEC'16 increased from a minimum of 5 ppb to ~ 10-13 ppb approaching the Drake Passage and the Coastal Antarctic Peninsula (CAP) region. The anthropogenic and biogenic O3 precursors from Ushuaia and the marine region influenced the mixing ratio of surface O3 over the Drake Passage and CAP region. The past data from WDCGG showed that the annual O3 cycle has a maximum during the winter of 30 to 35 ppb between June and August and a minimum during the summer (January to February) of 10 to 20 ppb. The surface O3 mixing ratio during the summer was controlled by photochemical processes in the presence of sunlight, leading to the depletion process. During the winter, the photochemical production of surface O3 was more dominant. The NOAA-AIRS and ECMWF-MACC analysis agreed well with the MASEC'16 data but twice were higher during the expedition period. Finally, the CO past data showed the surface O3 mixing ratio was influenced by the CO mixing ratio over both the Ushuaia and Antarctic regions. Peak surface O3 and CO hourly mixing ratios reached up to ~ 38 ppb (O3) and ~ 500 ppb (CO) over Ushuaia. High CO over Ushuaia led to the depletion process of surface O3 over the region. Monthly CO mixing ratio over Antarctic (South Pole) were low, leading to the production of surface O3 over the Antarctic region.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Ozone/analysis , Air Pollution/analysis , Antarctic Regions , Carbon Monoxide/analysis , Climate , Ozone/chemistry , Photochemical Processes , Seasons
11.
Environ Sci Pollut Res Int ; 24(18): 15278-15290, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28500553

ABSTRACT

Open biomass burning in Peninsula Malaysia, Sumatra, and parts of the Indochinese region is a major source of transboundary haze pollution in the Southeast Asia. To study the influence of haze on rainwater chemistry, a short-term investigation was carried out during the occurrence of a severe haze episode from March to April 2014. Rainwater samples were collected after a prolonged drought and analyzed for heavy metals and major ion concentrations using inductively coupled plasma mass spectroscopy (ICP-MS) and ion chromatography (IC), respectively. The chemical composition and morphology of the solid particulates suspended in rainwater were examined using a scanning electron microscope coupled with energy-dispersive X-ray spectroscopy (SEM-EDS). The dataset was further interpreted using enrichment factors (EF), statistical analysis, and a back trajectory (BT) model to find the possible sources of the particulates and pollutants. The results show a drop in rainwater pH from near neutral (pH 6.54) to acidic (

Subject(s)
Air Pollutants , Rain/chemistry , Air Movements , Asia, Southeastern , China , Environmental Monitoring , Hydrogen-Ion Concentration , Indonesia
12.
Sci Total Environ ; 573: 494-504, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27572541

ABSTRACT

Malaysian Borneo has a lower population density and is an area known for its lush rainforests. However, changes in pollutant profiles are expected due to increasing urbanisation and commercial-industrial activities. This study aims to determine the variation of surface O3 concentration recorded at seven selected stations in Malaysian Borneo. Hourly surface O3 data covering the period 2002 to 2013, obtained from the Malaysian Department of Environment (DOE), were analysed using statistical methods. The results show that the concentrations of O3 recorded in Malaysian Borneo during the study period were below the maximum Malaysian Air Quality Standard of 100ppbv. The hourly average and maximum O3 concentrations of 31 and 92ppbv reported at Bintulu (S3) respectively were the highest among the O3 concentrations recorded at the sampling stations. Further investigation on O3 precursors show that sampling sites located near to local petrochemical industrial activities, such as Bintulu (S3) and Miri (S4), have higher NO2/NO ratios (between 3.21 and 5.67) compared to other stations. The normalised O3 values recorded at all stations were higher during the weekend compared to weekdays (unlike its precursors) which suggests the influence of O3 titration by NO during weekdays. The results also show that there are distinct seasonal variations in O3 across Borneo. High surface O3 concentrations were usually observed between August and September at all stations with the exception of station S7 on the east coast. Majority of the stations (except S1 and S6) have recorded increasing averaged maximum concentrations of surface O3 over the analysed years. Increasing trends of NO2 and decreasing trends of NO influence the yearly averaged maximum of O3 especially at S3. This study also shows that variations of meteorological factors such as wind speed and direction, humidity and temperature influence the concentration of surface O3.

13.
Environ Sci Pollut Res Int ; 22(17): 13111-26, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25925145

ABSTRACT

Principal component analysis (PCA) and correlation have been used to study the variability of particle mass and particle number concentrations (PNC) in a tropical semi-urban environment. PNC and mass concentration (diameter in the range of 0.25->32.0 µm) have been measured from 1 February to 26 February 2013 using an in situ Grimm aerosol sampler. We found that the 24-h average total suspended particulates (TSP), particulate matter ≤10 µm (PM10), particulate matter ≤2.5 µm (PM2.5) and particulate matter ≤1 µm (PM1) were 14.37 ± 4.43, 14.11 ± 4.39, 12.53 ± 4.13 and 10.53 ± 3.98 µg m(-3), respectively. PNC in the accumulation mode (<500 nm) was the most abundant (at about 99 %). Five principal components (PCs) resulted from the PCA analysis where PC1 (43.8 % variance) predominates with PNC in the fine and sub-microme tre range. PC2, PC3, PC4 and PC5 explain 16.5, 12.4, 6.0 and 5.6 % of the variance to address the coarse, coarser, accumulation and giant fraction of PNC, respectively. Our particle distribution results show good agreement with the moderate resolution imaging spectroradiometer (MODIS) distribution.


Subject(s)
Air Pollutants/analysis , Particulate Matter/analysis , Aerosols , Cities , Environmental Monitoring , Particle Size , Principal Component Analysis , Thailand , Tropical Climate , Wind
14.
Mar Pollut Bull ; 93(1-2): 278-83, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25682566

ABSTRACT

This study aims to determine the concentration of sterols used as biomarkers in the surface microlayer (SML) in estuarine areas of the Selangor River, Malaysia. Samples were collected during different seasons through the use of a rotation drum. The analysis of sterols was performed using gas chromatography equipped with a flame ionisation detector (GC-FID). The results showed that the concentrations of total sterols in the SML ranged from 107.06 to 505.55 ng L(-1). The total sterol concentration was found to be higher in the wet season. Cholesterol was found to be the most abundant sterols component in the SML. The diagnostic ratios of sterols show the influence of natural sources and waste on the contribution of sterols in the SML. Further analysis, using principal component analysis (PCA), showed distinct inputs of sterols derived from human activity (40.58%), terrigenous and plant inputs (22.59%) as well as phytoplankton and marine inputs (17.35%).


Subject(s)
Environmental Monitoring/methods , Estuaries , Rivers/chemistry , Sterols/analysis , Biomarkers/analysis , Chromatography, Gas , Humans , Malaysia , Seasons
15.
Sci Total Environ ; 482-483: 336-48, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24662202

ABSTRACT

Rural background stations provide insight into seasonal variations in pollutant concentrations and allow for comparisons to be made with stations closer to anthropogenic emissions. In Malaysia, the designated background station is located in Jerantut, Pahang. A fifteen-year data set focusing on ten major air pollutants and four meteorological variables from this station were analysed. Diurnal, monthly and yearly pollutant concentrations were derived from hourly continuous monitoring data. Statistical methods employed included principal component regression (PCR) and sensitivity analysis. Although only one of the yearly concentrations of the pollutants studied exceeded national and World Health Organisation (WHO) guideline standards, namely PM10, seven of the pollutants (NO, NO2, NOx, O3, PM10, THC and CH4) showed a positive upward trend over the 15-year period. High concentrations of PM10 were recorded during severe haze episodes in this region. Whilst, monthly concentrations of most air pollutants, such as: PM10, O3, NOx, NO2, CO and NmHC were recorded at higher concentrations between June and September, during the southwest monsoon. Such results correspond with the mid-range transport of pollutants from more urbanised and industrial areas. Diurnal patterns, rationed between major air pollutants and sensitivity analysis, indicate the influence of local traffic emissions on air quality at the Jerantut background station. Although the pollutant concentrations have not shown a rapid increase, an alternative background station will need to be assigned within the next decade if development projects in the surrounding area are not halted.


Subject(s)
Air Pollutants/analysis , Air Pollution/statistics & numerical data , Environmental Monitoring , Malaysia , Seasons
16.
Philos Trans R Soc Lond B Biol Sci ; 366(1582): 3210-24, 2011 Nov 27.
Article in English | MEDLINE | ID: mdl-22006963

ABSTRACT

We present results from the OP3 campaign in Sabah during 2008 that allow us to study the impact of local emission changes over Borneo on atmospheric composition at the regional and wider scale. OP3 constituent data provide an important constraint on model performance. Treatment of boundary layer processes is highlighted as an important area of model uncertainty. Model studies of land-use change confirm earlier work, indicating that further changes to intensive oil palm agriculture in South East Asia, and the tropics in general, could have important impacts on air quality, with the biggest factor being the concomitant changes in NO(x) emissions. With the model scenarios used here, local increases in ozone of around 50 per cent could occur. We also report measurements of short-lived brominated compounds around Sabah suggesting that oceanic (and, especially, coastal) emission sources dominate locally. The concentration of bromine in short-lived halocarbons measured at the surface during OP3 amounted to about 7 ppt, setting an upper limit on the amount of these species that can reach the lower stratosphere.


Subject(s)
Air Pollution/analysis , Arecaceae/chemistry , Atmosphere/chemistry , Trees/chemistry , Agriculture , Arecaceae/physiology , Atmosphere/analysis , Borneo , Bromine/chemistry , Butadienes/chemistry , Carbanilides/analysis , Carbanilides/chemistry , Computer Simulation , Formaldehyde/chemistry , Hemiterpenes/chemistry , Malaysia , Nitrogen Oxides/chemistry , Oxidation-Reduction , Ozone/chemistry , Pentanes/chemistry , Trees/physiology , Tropical Climate , Volatile Organic Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...