Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
J Leukoc Biol ; 115(2): 358-373, 2024 01 19.
Article in English | MEDLINE | ID: mdl-37793181

ABSTRACT

Exposure to pathogen-associated molecular patterns (PAMPs) induces an augmented, broad-spectrum antimicrobial response to subsequent infection, a phenomenon termed innate immune memory. This study examined the effects of treatment with ß-glucan, a fungus-derived dectin-1 ligand, or monophosphoryl lipid A (MPLA), a bacteria-derived Toll-like receptor 4 ligand, on innate immune memory with a focus on identifying common cellular and molecular pathways activated by these diverse PAMPs. Treatment with either PAMP prepared the innate immune system to respond more robustly to Pseudomonas aeruginosa infection in vivo by facilitating mobilization of innate leukocytes into blood, recruitment of leukocytes to the site of infection, augmentation of microbial clearance, and attenuation of cytokine production. Examination of macrophages ex vivo showed amplification of metabolism, phagocytosis, and respiratory burst after treatment with either agent, although MPLA more robustly augmented these activities and more effectively facilitated killing of bacteria. Both agents activated gene expression pathways in macrophages that control inflammation, antimicrobial functions, and protein synthesis and suppressed pathways regulating cell division. ß-glucan treatment minimally altered macrophage differential gene expression in response to lipopolysaccharide (LPS) challenge, whereas MPLA attenuated the magnitude of the LPS-induced transcriptional response, especially cytokine gene expression. These results show that ß-glucan and MPLA similarly augment the innate response to infection in vivo. Yet, MPLA more potently induces alterations in macrophage metabolism, antimicrobial functions, gene transcription and the response to LPS.


Subject(s)
Anti-Infective Agents , beta-Glucans , Lipopolysaccharides/pharmacology , Pathogen-Associated Molecular Pattern Molecules , Trained Immunity , Ligands , Cytokines , beta-Glucans/pharmacology , Bacteria , Immunity, Innate
2.
Am J Physiol Renal Physiol ; 324(5): F472-F482, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36995924

ABSTRACT

Acute kidney injury (AKI) is common in surgical and critically ill patients. This study examined whether pretreatment with a novel Toll-like receptor 4 agonist attenuated ischemia-reperfusion injury (IRI)-induced AKI (IRI-AKI). We performed a blinded, randomized-controlled study in mice pretreated with 3-deacyl 6-acyl phosphorylated hexaacyl disaccharide (PHAD), a synthetic Toll-like receptor 4 agonist. Two cohorts of male BALB/c mice received intravenous vehicle or PHAD (2, 20, or 200 µg) at 48 and 24 h before unilateral renal pedicle clamping and simultaneous contralateral nephrectomy. A separate cohort of mice received intravenous vehicle or 200 µg PHAD followed by bilateral IRI-AKI. Mice were monitored for evidence of kidney injury for 3 days postreperfusion. Kidney function was assessed by serum blood urea nitrogen and creatinine measurements. Kidney tubular injury was assessed by semiquantitative analysis of tubular morphology on periodic acid-Schiff (PAS)-stained kidney sections and by kidney mRNA quantification of injury [neutrophil gelatinase-associated lipocalin (Ngal), kidney injury molecule-1 (Kim-1), and heme oxygenase-1 (Ho-1)] and inflammation [interleukin-6 (IL-6), interleukin-1ß (IL-1ß), and tumor necrosis factor-α (Tnf-α)] using quantitative RT-PCR. Immunohistochemistry was used to quantify proximal tubular cell injury and renal macrophages by quantifying the areas stained with Kim-1 and F4/80 antibodies, respectively, and TUNEL staining to detect the apoptotic nuclei. PHAD pretreatment yielded dose-dependent kidney function preservation after unilateral IRI-AKI. Histological injury, apoptosis, Kim-1 staining, and Ngal mRNA were lower in PHAD-treated mice and IL-1ß mRNA was higher in PHAD-treated mice. Similar pretreatment protection was noted with 200 mg PHAD after bilateral IRI-AKI, with significantly reduced Kim-1 immunostaining in the outer medulla of mice treated with PHAD after bilateral IRI-AKI. In conclusion, PHAD pretreatment leads to dose-dependent protection from renal injury after unilateral and bilateral IRI-AKI in mice.NEW & NOTEWORTHY Pretreatment with 3-deacyl 6-acyl phosphorylated hexaacyl disaccharide; a novel synthetic Toll-like receptor 4 agonist, preserves kidney function during ischemia-reperfusion injury-induced acute kidney injury.


Subject(s)
Acute Kidney Injury , Reperfusion Injury , Toll-Like Receptor 4 , Animals , Male , Mice , Acute Kidney Injury/etiology , Acute Kidney Injury/pathology , Acute Kidney Injury/prevention & control , Kidney/pathology , Lipocalin-2 , Mice, Inbred C57BL , Reperfusion Injury/complications , Reperfusion Injury/drug therapy , Reperfusion Injury/pathology , RNA, Messenger , Toll-Like Receptor 4/agonists
3.
Front Immunol ; 13: 1044662, 2022.
Article in English | MEDLINE | ID: mdl-36439136

ABSTRACT

Immunocompromised populations are highly vulnerable to developing life-threatening infections. Strategies to protect patients with weak immune responses are urgently needed. Employing trained immunity, whereby innate leukocytes undergo reprogramming upon exposure to a microbial product and respond more robustly to subsequent infection, is a promising approach. Previously, we demonstrated that the TLR4 agonist monophosphoryl lipid A (MPLA) induces trained immunity and confers broad resistance to infection. TLR4 signals through both MyD88- and TRIF-dependent cascades, but the relative contribution of each pathway to induction of trained immunity is unknown. Here, we show that MPLA-induced resistance to Staphylococcus aureus infection is lost in MyD88-KO, but not TRIF-KO, mice. The MyD88-activating agonist CpG (TLR9 agonist), but not TRIF-activating Poly I:C (TLR3 agonist), protects against infection in a macrophage-dependent manner. MPLA- and CpG-induced augmentation of macrophage metabolism and antimicrobial functions is blunted in MyD88-, but not TRIF-KO, macrophages. Augmentation of antimicrobial functions occurs in parallel to metabolic reprogramming and is dependent, in part, on mTOR activation. Splenic macrophages from CpG-treated mice confirmed that TLR/MyD88-induced reprogramming occurs in vivo. TLR/MyD88-triggered metabolic and functional reprogramming was reproduced in human monocyte-derived macrophages. These data show that MyD88-dependent signaling is critical in TLR-mediated trained immunity.


Subject(s)
Myeloid Differentiation Factor 88 , Toll-Like Receptor 4 , Humans , Mice , Animals , Myeloid Differentiation Factor 88/metabolism , Toll-Like Receptor 4/metabolism , Adaptor Proteins, Vesicular Transport/metabolism , Toll-Like Receptors/metabolism , Macrophages , Adaptor Proteins, Signal Transducing/metabolism
4.
Shock ; 58(4): 295-303, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36018281

ABSTRACT

ABSTRACT: Objectives: Nosocomial pneumonia is a common complication in critically ill patients. The goal of this study was to examine the efficacy of the Toll-like receptor 4 agonist 3-deacyl phosphorylated hexacyl disaccharide (3D PHAD), in a clinically relevant murine model of pneumonia, and assess the cellular mechanisms that mediate the protective response. Design: Mice received intrapulmonary 3D PHAD (20 µg) or vehicle for 2 consecutive days before challenge with intrapulmonary Klebsiella pneumoniae (2.3 × 10 3 colony-forming units). Mice were followed for 14-day survival, pulmonary K. pneumoniae burden, lung leukocyte profile, leukocyte phagocytic capacity, and cytokine production. Pneumonia severity and leukocyte recruitment were further assessed by histological evaluation. Setting: Research laboratory. Subjects: Wild-type, male C57BL/6 J mice. Interventions: Intrapulmonary treatment with 20 µg 3D PHAD for 2 consecutive days. Measurements and main results: Intrapulmonary treatment with 3D PHAD decreased lung K. pneumoniae colony-forming units and pneumonia severity with an associated improvement in survival compared with mice treated with vehicle. The numbers of neutrophils, monocytes, and macrophages in the lungs of 3D PHAD-treated mice were higher than those in vehicle-treated mice before infection but were not significantly different from vehicle-treated mice at 48 h after K. pneumoniae challenge. Lung innate leukocytes from 3D PHAD-treated mice had increased phagocytic capacity. Treatment with 3D PHAD alone increased cytokines in the lungs but decreased cytokines in plasma during K. pneumoniae pneumonia as compared with control. Conclusions: Intrapulmonary treatment with 3D PHAD augments innate immunity in the lung and facilitates resistance to K. pneumoniae pneumonia.


Subject(s)
Klebsiella Infections , Pneumonia, Bacterial , Male , Mice , Animals , Klebsiella pneumoniae , Toll-Like Receptor 4 , Mice, Inbred C57BL , Pneumonia, Bacterial/pathology , Cytokines , Lung/pathology , Disaccharides
6.
J Immunol ; 208(4): 785-792, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35115374

ABSTRACT

Unlike the adaptive immune system, the innate immune system has classically been characterized as being devoid of memory functions. However, recent research shows that innate myeloid and lymphoid cells have the ability to retain memory of prior pathogen exposure and become primed to elicit a robust, broad-spectrum response to subsequent infection. This phenomenon has been termed innate immune memory or trained immunity. Innate immune memory is induced via activation of pattern recognition receptors and the actions of cytokines on hematopoietic progenitors and stem cells in bone marrow and innate leukocytes in the periphery. The trained phenotype is induced and sustained via epigenetic modifications that reprogram transcriptional patterns and metabolism. These modifications augment antimicrobial functions, such as leukocyte expansion, chemotaxis, phagocytosis, and microbial killing, to facilitate an augmented host response to infection. Alternatively, innate immune memory may contribute to the pathogenesis of chronic diseases, such as atherosclerosis and Alzheimer's disease.


Subject(s)
Communicable Diseases/etiology , Disease Susceptibility , Host-Pathogen Interactions/immunology , Immunity, Innate , Immunologic Memory , Animals , Biomarkers , Communicable Diseases/metabolism , Disease Resistance/genetics , Disease Resistance/immunology , Disease Susceptibility/immunology , Energy Metabolism , Epigenesis, Genetic , Gene Expression Regulation , Host-Pathogen Interactions/genetics , Humans , Immune System/cytology , Immune System/immunology , Immune System/metabolism , Organ Specificity/genetics , Organ Specificity/immunology , Receptors, Pattern Recognition/metabolism , Signal Transduction
7.
J Immunol ; 207(11): 2785-2798, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34740960

ABSTRACT

Bacterial infections are a common and deadly threat to vulnerable patients. Alternative strategies to fight infection are needed. ß-Glucan, an immunomodulator derived from the fungal cell wall, provokes resistance to infection by inducing trained immunity, a phenomenon that persists for weeks to months. Given the durability of trained immunity, it is unclear which leukocyte populations sustain this effect. Macrophages have a life span that surpasses the duration of trained immunity. Thus, we sought to define the contribution of differentiated macrophages to trained immunity. Our results show that ß-glucan protects mice from Pseudomonas aeruginosa infection by augmenting recruitment of innate leukocytes to the site of infection and facilitating local clearance of bacteria, an effect that persists for more than 7 d. Adoptive transfer of macrophages, trained using ß-glucan, into naive mice conferred a comparable level of protection. Trained mouse bone marrow-derived macrophages assumed an antimicrobial phenotype characterized by enhanced phagocytosis and reactive oxygen species production in parallel with sustained enhancements in glycolytic and oxidative metabolism, increased mitochondrial mass, and membrane potential. ß-Glucan induced broad transcriptomic changes in macrophages consistent with early activation of the inflammatory response, followed by sustained alterations in transcripts associated with metabolism, cellular differentiation, and antimicrobial function. Trained macrophages constitutively secreted CCL chemokines and robustly produced proinflammatory cytokines and chemokines in response to LPS challenge. Induction of the trained phenotype was independent of the classic ß-glucan receptors Dectin-1 and TLR-2. These findings provide evidence that ß-glucan induces enhanced protection from infection by driving trained immunity in macrophages.


Subject(s)
Immunologic Memory/drug effects , Macrophages/drug effects , Protective Agents/pharmacology , beta-Glucans/pharmacology , Animals , Cell Differentiation/drug effects , Cell Differentiation/immunology , Female , Immunity, Innate/drug effects , Immunity, Innate/immunology , Immunologic Memory/immunology , Macrophages/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
8.
Methods Mol Biol ; 2321: 111-120, 2021.
Article in English | MEDLINE | ID: mdl-34048011

ABSTRACT

Infection is the leading cause of death and prolonged hospitalization in severely burned patients that survive the acute phase of injury. Here we describe a murine model of severe burn injury followed by subsequent postburn infection, both local and systemic, that leads to sepsis. A detailed description of the full-thickness scald burn procedure is provided, followed by description of infection with two common burn-associated nosocomial pathogens, Pseudomonas aeruginosa and Staphylococcus aureus.


Subject(s)
Burns/microbiology , Pseudomonas Infections/microbiology , Staphylococcal Infections/microbiology , Wound Infection/microbiology , Animals , Disease Models, Animal , Female , Male , Mice , Mice, Inbred BALB C , Pseudomonas aeruginosa/pathogenicity , Sepsis/microbiology , Staphylococcus aureus/pathogenicity
9.
Eur Rev Med Pharmacol Sci ; 24(17): 9172-9181, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32965011

ABSTRACT

OBJECTIVE: Our objective was to find an association between exposure of a population to Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and mortality rate due to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) across different countries worldwide. MATERIALS AND METHODS: To find the relationship between exposure to MERS-CoV and mortality rate due to SARS-CoV-2, we collected and analyzed data of three possible factors that may have resulted in an exposure of a population to MERS-CoV: (1) the number of Middle East Respiratory Syndrome (MERS) cases reported among 16 countries since 2012; (2) data of MERS-CoV seroprevalence in camels across 23 countries, as working with camels increase risk of exposure to MERS-CoV; (3) data of travel history of people from 51 countries to Saudi Arabia was collected on the assumption that travel to a country where MERS is endemic, such as, Saudi Arabia, could also lead to exposure to MERS-CoV. RESULTS: We found a significantly lower number of Coronavirus disease 2019 (COVID-19) deaths per million (deaths/M) of a population in countries that are likely to be exposed to MERS-CoV than otherwise (t-stat=3.686, p<0.01). In addition, the number of COVID-19 deaths/M of a population was significantly lower in countries that reported a higher seroprevalence of MERS-CoV in camels than otherwise (t-stat=4.5077, p<0.01). Regression analysis showed that increased travelling history to Saudi Arabia is likely to be associated with a lower mortality rate due to COVID-19. CONCLUSIONS: This study provides empirical evidence that a population that was at an increased risk of exposure to MERS-CoV had a significantly lower mortality rate due to SARS-CoV-2, which might be due to cross-protective immunity against SARS-CoV-2 in that population because of an earlier exposure to MERS-CoV.


Subject(s)
Coronavirus Infections/mortality , Pneumonia, Viral/mortality , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/pathology , Coronavirus Infections/virology , Humans , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Prevalence , Regression Analysis , SARS-CoV-2 , Seroepidemiologic Studies , Survival Rate
10.
Front Immunol ; 11: 1043, 2020.
Article in English | MEDLINE | ID: mdl-32547553

ABSTRACT

Critically ill, severely injured and high-risk surgical patients are vulnerable to secondary infections during hospitalization and after hospital discharge. Studies show that the mitochondrial function and oxidative metabolism of monocytes and macrophages are impaired during sepsis. Alternatively, treatment with microbe-derived ligands, such as monophosphoryl lipid A (MPLA), peptidoglycan, or ß-glucan, that interact with toll-like receptors and other pattern recognition receptors on leukocytes induces a state of innate immune memory that confers broad-spectrum resistance to infection with common hospital-acquired pathogens. Priming of macrophages with MPLA, CPG oligodeoxynucleotides (CpG ODN), or ß-glucan induces a macrophage metabolic phenotype characterized by mitochondrial biogenesis and increased oxidative metabolism in parallel with increased glycolysis, cell size and granularity, augmented phagocytosis, heightened respiratory burst functions, and more effective killing of microbes. The mitochondrion is a bioenergetic organelle that not only contributes to energy supply, biosynthesis, and cellular redox functions but serves as a platform for regulating innate immunological functions such as production of reactive oxygen species (ROS) and regulatory intermediates. This review will define current knowledge of leukocyte metabolic dysfunction during and after sepsis and trauma. We will further discuss therapeutic strategies that target leukocyte mitochondrial function and might have value in preventing or reversing sepsis- and trauma-induced immune dysfunction.


Subject(s)
Infections/immunology , Leukocytes/metabolism , Mitochondria/metabolism , Sepsis/immunology , Wounds and Injuries/immunology , Animals , Cellular Reprogramming , Humans , Immunity, Innate , Leukocytes/immunology , Oxidative Stress
11.
Front Immunol ; 11: 622614, 2020.
Article in English | MEDLINE | ID: mdl-33679711

ABSTRACT

Despite advances in critical care medicine, infection remains a significant problem that continues to be complicated with the challenge of antibiotic resistance. Immunocompromised patients are highly susceptible to development of severe infection which often progresses to the life-threatening condition of sepsis. Thus, immunotherapies aimed at boosting host immune defenses are highly attractive strategies to ward off infection and protect patients. Recently there has been mounting evidence that activation of the innate immune system can confer long-term functional reprogramming whereby innate leukocytes mount more robust responses upon secondary exposure to a pathogen for more efficient clearance and host protection, termed trained immunity. Toll-like receptor (TLR) agonists are a class of agents which have been shown to trigger the phenomenon of trained immunity through metabolic reprogramming and epigenetic modifications which drive profound augmentation of antimicrobial functions. Immunomodulatory TLR agonists are also highly beneficial as vaccine adjuvants. This review provides an overview on TLR signaling and our current understanding of TLR agonists which show promise as immunotherapeutic agents for combating infection. A brief discussion on our current understanding of underlying mechanisms is also provided. Although an evolving field, TLR agonists hold strong therapeutic potential as immunomodulators and merit further investigation for clinical translation.


Subject(s)
Immunity, Innate , Immunotherapy , Infections , Signal Transduction/immunology , Toll-Like Receptors , Humans , Infections/immunology , Infections/therapy , Toll-Like Receptors/agonists , Toll-Like Receptors/immunology
12.
Front Immunol ; 11: 624272, 2020.
Article in English | MEDLINE | ID: mdl-33613563

ABSTRACT

Sepsis is a leading cause of death in intensive care units and survivors develop prolonged immunosuppression and a high incidence of recurrent infections. No definitive therapy exists to treat sepsis and physicians rely on supportive care including antibiotics, intravenous fluids, and vasopressors. With the rising incidence of antibiotic resistant microbes, it is becoming increasingly critical to discover novel therapeutics. Sepsis-induced leukocyte dysfunction and immunosuppression is recognized as an important contributor towards increased morbidity and mortality. Pre-clinical and clinical studies show that specific cell surface inhibitory immune checkpoint receptors and ligands including PD-1, PD-L1, CTLA4, BTLA, TIM3, OX40, and 2B4 play important roles in the pathophysiology of sepsis by mediating a fine balance between host immune competency and immunosuppression. Pre-clinical studies targeting the inhibitory effects of these immune checkpoints have demonstrated reversal of leukocyte dysfunction and improved host resistance of infection. Measurement of immune checkpoint expression on peripheral blood leukocytes may serve as a means of stratifying patients to direct individualized therapy. This review focuses on advances in our understanding of the role of immune checkpoints in the host response to infections, and the potential clinical application of therapeutics targeting the inhibitory immune checkpoint pathways for the management of septic patients.


Subject(s)
Gene Expression Regulation/immunology , Immune Checkpoint Proteins/immunology , Immune Tolerance , Leukocytes/immunology , Sepsis/immunology , Humans , Leukocytes/pathology , Sepsis/pathology , Sepsis/therapy
13.
Shock ; 53(3): 307-316, 2020 03.
Article in English | MEDLINE | ID: mdl-31045990

ABSTRACT

BACKGROUND: Monophosphoryl lipid A (MPLA) is a TLR4 agonist that has potent immunomodulatory properties and modulates innate immune function to improve host resistance to infection with common nosocomial pathogens in mice. The goal of this study was to assess the safety and efficacy of MPLA in a sheep model of burn injury and Pseudomonas aeruginosa pneumonia. The sheep provides a favorable model for preclinical testing as their response to TLR4 agonists closely mimics that of humans. METHODS: Twelve chronically instrumented adult female Merino sheep received 20% total body surface area, third-degree cutaneous burn under anesthesia and analgesia. At 24 h after burn, sheep were randomly allocated to receive: MPLA (2.5 µg/kg i.v., n = 6), or vehicle (i.v., n = 6). At 24 h after MPLA or vehicle treatment, Pseudomonas aeruginosa pneumonia was induced. Sheep were mechanically ventilated, fluid resuscitated and cardiopulmonary variables were monitored for 24 h after induction of pneumonia. Cytokine production, vascular barrier function, and lung bacterial burden were also measured. RESULTS: MPLA infusion induced small and transient alterations in core body temperature, heart rate, pulmonary artery pressure, and pulmonary vascular resistance. Pulmonary mechanics were not altered. Vehicle-treated sheep developed severe acute lung injury during Pseudomonas aeruginosa pneumonia, which was attenuated by MPLA as indicated by improved PaO2/FiO2 ratio, oxygenation index, and shunt fraction. Sheep treated with MPLA also exhibited less vascular leak, lower blood lactate levels, and lower modified organ injury score. MPLA treatment attenuated systemic cytokine production and decreased lung bacterial burden. CONCLUSIONS: MPLA was well tolerated in burned sheep and attenuated development of acute lung injury, lactatemia, cytokinemia, vascular leak, and hemodynamic changes caused by Pseudomonas aeruginosa pneumonia.


Subject(s)
Adjuvants, Immunologic/therapeutic use , Burns/complications , Lipid A/analogs & derivatives , Multiple Organ Failure/prevention & control , Pneumonia, Bacterial/complications , Pseudomonas Infections/complications , Animals , Disease Models, Animal , Female , Lipid A/therapeutic use , Multiple Organ Failure/etiology , Pneumonia, Bacterial/microbiology , Pseudomonas aeruginosa , Sheep
15.
Pharmacol Res ; 150: 104502, 2019 12.
Article in English | MEDLINE | ID: mdl-31689522

ABSTRACT

Infectious diseases remain a threat to critically ill patients, particularly with the rise of antibiotic-resistant bacteria. Septic shock carries a mortality of up to ∼40% with no compelling evidence of promising therapy to reduce morbidity or mortality. Septic shock survivors are also prone to nosocomial infections. Treatment with toll-like receptor 4 (TLR4) agonists have demonstrated significant protection against common nosocomial pathogens in various clinically relevant models of infection and septic shock. TLR4 agonists are derived from a bacteria cell wall or synthesized de novo, and more recently novel small molecule TLR4 agonists have also been developed. TLR4 agonists augment innate immune functions including expansion and recruitment of innate leukocytes to the site of infection. Recent studies demonstrate TLR4-induced leukocyte metabolic reprogramming of cellular metabolism to improve antimicrobial function. Metabolic changes include sustained augmentation of macrophage glycolysis, mitochondrial function, and tricarboxylic acid cycle flux. These findings set the stage for the use of TLR4 agonists as standalone therapeutic agents or antimicrobial adjuncts in patient populations vulnerable to nosocomial infections.


Subject(s)
Adjuvants, Immunologic/therapeutic use , Disease Resistance/immunology , Toll-Like Receptor 4/agonists , Animals , Humans , Immunity, Innate , Infection Control , Infections/immunology , Toll-Like Receptor 4/immunology
16.
Crit Care Med ; 47(11): e930-e938, 2019 11.
Article in English | MEDLINE | ID: mdl-31567352

ABSTRACT

OBJECTIVES: To determine whether synthetic phosphorylated hexa-acyl disaccharides provide antimicrobial protection in clinically relevant models of bacterial infection. DESIGN: Laboratory study. SETTING: University laboratory. SUBJECTS: BALB/c, C57BL/10J, and C57BL/10ScNJ mice. INTERVENTIONS: Mice were treated with lactated Ringer's (vehicle) solution, monophosphoryl lipid A, or phosphorylated hexa-acyl disaccharides at 48 and 24 hours prior to intraperitoneal Pseudomonas aeruginosa or IV Staphylococcus aureus infection. Leukocyte recruitment, cytokine production, and bacterial clearance were measured 6 hours after P. aeruginosa infection. In the systemic S. aureus infection model, one group of mice was monitored for 14-day survival and another for S. aureus tissue burden at 3 days postinfection. Duration of action for 3-deacyl 6-Acyl phosphorylated hexa-acyl disaccharide was determined at 3, 10, and 14 days using a model of intraperitoneal P. aeruginosa infection. Effect of 3-deacyl 6-Acyl phosphorylated hexa-acyl disaccharide on in vivo leukocyte phagocytosis and respiratory burst was examined. Leukocyte recruitment, cytokine production, and bacterial clearance were measured after P. aeruginosa infection in wild-type and toll-like receptor 4 knockout mice treated with 3-deacyl 6-Acyl phosphorylated hexa-acyl disaccharide or vehicle to assess receptor specificity. MEASUREMENTS AND MAIN RESULTS: During intraperitoneal P. aeruginosa infection, phosphorylated hexa-acyl disaccharides significantly attenuated infection-induced hypothermia, augmented leukocyte recruitment and bacterial clearance, and decreased cytokine production. At 3 days post S. aureus infection, bacterial burden in lungs, spleen, and kidneys was significantly decreased in mice treated with monophosphoryl lipid A or phosphorylated hexa-acyl disaccharides, which was associated with improved survival. Leukocyte phagocytosis and respiratory burst functions were enhanced after treatment with monophosphoryl lipid A or phosphorylated hexa-acyl disaccharides. A time course study showed that monophosphoryl lipid A- and 3-deacyl 6-Acyl phosphorylated hexa-acyl disaccharide-mediated protection against P. aeruginosa lasts for up to 10 days. Partial loss of augmented innate antimicrobial responses was observed in toll-like receptor 4 knockout mice treated with 3-deacyl 6-Acyl phosphorylated hexa-acyl disaccharide. CONCLUSIONS: Phosphorylated hexa-acyl disaccharides significantly augment resistance against clinically relevant Gram-negative and Gram-positive infections via enhanced leukocyte recruitment, phagocytosis, and respiratory burst functions of innate leukocytes. Improved antimicrobial protection persists for up to 10 days and is partially mediated through toll-like receptor 4.


Subject(s)
Cross Infection/prevention & control , Cytokines/metabolism , Disaccharides/pharmacology , Hexosaminidase A/pharmacology , Peritoneal Cavity/physiopathology , Staphylococcal Infections/physiopathology , Analysis of Variance , Animals , Blotting, Western/methods , Disease Models, Animal , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Peritoneal Cavity/microbiology , Random Allocation , Staphylococcal Infections/mortality , Statistics, Nonparametric , Survival Rate
17.
J Leukoc Biol ; 106(1): 105-117, 2019 07.
Article in English | MEDLINE | ID: mdl-30791134

ABSTRACT

Cellular metabolism is a means of generating ATP to provide energy for key cellular functions. However, recent research shows that citric acid cycle intermediates target vital cellular functions of the innate immune system. Succinate, itaconate, citrate, and fumarate have been shown to mediate or regulate important myeloid cell functions during infection and inflammation. This review covers the regulatory functions of citric acid cycle intermediates in myeloid cells and discusses potential translational applications, key mechanistic questions, and future research directions.


Subject(s)
Citric Acid Cycle/physiology , Leukocytes/physiology , Animals , Citric Acid/pharmacology , Fumarates/pharmacology , Humans , Reactive Oxygen Species/metabolism , Succinates/pharmacology , Succinic Acid/pharmacology
18.
Hernia ; 23(2): 387-396, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30661178

ABSTRACT

PURPOSE: Repair of giant paraoesophageal herniae (GPEH) is technically challenging and requires significant experience in advanced foregut surgery. Controversy continues on suture versus mesh cruroplasty with the most recent systematic review and meta-analysis putting the onus on the operating surgeon. Study aim was to review whether the biological prosthesis (non-cross-linked bovine pericardium and porcine dermis) and the technique adopted for patients with GPEH had an influence on clinical and radiological recurrences. METHOD: A retrospective analysis of a prospectively collected data of 60 consecutive patients with confirmed 5 cm hiatus hernia and ≥ 30% stomach displacement in the thorax that were operated in the upper gastrointestinal unit of a large district general hospital between September 2010 and August 2017. Pre and post-surgery Gastro-Oesophageal Reflux Disease Questionnaire [(GORD-HRQOL)] and a follow up contrast study were completed. RESULTS: 60 included 2 (3%) and 58 (97%) emergency and elective procedures respectively with a male: female ratio of 1:3, age 71* (Median) (42-89) years, BMI 29* (19-42) and 26 (43%) with ASA III/IV. Investigations confirmed 46* (37-88) mm and 42* (34-77) mm transverse and antero-posterior hiatal defect respectively with 60* (30-100)% displacement of stomach into chest. Operative time and length of stay was 180* (120-510) minutes and 2* (1-30) days respectively. One (2%) converted for bleeding and 2 (3%) peri-operative deaths. Five (8%), 5 (8%) and 4 (7%) have dysphagia, symptomatic and radiological recurrences respectively. GORD-HRQOL recorded preoperatively was 27* (10-39) dropping significantly postoperatively to 0* (0-21) (P < 0.005) with 95% patient satisfaction at a follow up of 60* (36-84) months. CONCLUSIONS: Our technique of laparoscopic GPEH repair with biological prosthesis is safe with a reduced symptomatic and radiological recurrence and an acceptable morbidity and mortality.


Subject(s)
Bioprosthesis/statistics & numerical data , Hernia, Hiatal/surgery , Herniorrhaphy/methods , Adult , Aged , Aged, 80 and over , Animals , Cattle , Female , Follow-Up Studies , Gastroesophageal Reflux/surgery , Herniorrhaphy/mortality , Humans , Laparoscopy/methods , Male , Middle Aged , Operative Time , Patient Satisfaction , Prostheses and Implants , Prosthesis Implantation , Quality of Life , Recurrence , Retrospective Studies , Stomach/surgery , Surveys and Questionnaires , Sutures , United Kingdom/epidemiology
20.
J Immunol ; 200(11): 3777-3789, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29686054

ABSTRACT

Monophosphoryl lipid A (MPLA) is a clinically used TLR4 agonist that has been found to drive nonspecific resistance to infection for up to 2 wk. However, the molecular mechanisms conferring protection are not well understood. In this study, we found that MPLA prompts resistance to infection, in part, by inducing a sustained and dynamic metabolic program in macrophages that supports improved pathogen clearance. Mice treated with MPLA had enhanced resistance to infection with Staphylococcus aureus and Candida albicans that was associated with augmented microbial clearance and organ protection. Tissue macrophages, which exhibited augmented phagocytosis and respiratory burst after MPLA treatment, were required for the beneficial effects of MPLA. Further analysis of the macrophage phenotype revealed that early TLR4-driven aerobic glycolysis was later coupled with mitochondrial biogenesis, enhanced malate shuttling, and increased mitochondrial ATP production. This metabolic program was initiated by overlapping and redundant contributions of MyD88- and TRIF-dependent signaling pathways as well as downstream mTOR activation. Blockade of mTOR signaling inhibited the development of the metabolic and functional macrophage phenotype and ablated MPLA-induced resistance to infection in vivo. Our findings reveal that MPLA drives macrophage metabolic reprogramming that evolves over a period of days to support a macrophage phenotype highly effective at mediating microbe clearance and that this results in nonspecific resistance to infection.


Subject(s)
Macrophages/metabolism , Toll-Like Receptor 4/metabolism , Adenosine Triphosphate/metabolism , Animals , Candida albicans/drug effects , Candidiasis/drug therapy , Candidiasis/metabolism , Glycolysis/physiology , Lipid A/analogs & derivatives , Macrophages/microbiology , Male , Mice , Mice, Inbred C57BL , Myeloid Differentiation Factor 88/metabolism , Signal Transduction/physiology , Staphylococcal Infections/drug therapy , Staphylococcal Infections/metabolism , Staphylococcus aureus/drug effects , TOR Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL