Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Life Sci ; 354: 122955, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39122109

ABSTRACT

AIMS: Losartan potassium-laden pegylated nanocubic vesicles (LP-NCVs-PEG) have an intriguing kidney-targeted nanoplatform for acute renal injury via blocking apoptosis and activating wnt/ß-catenin pathway. MAIN METHODS: Utilizing a thin-film hydration methodology established on 42 full factorial design to produce LP loaded nanocubic formulations (LP-NCVs) which composed mainly from L-α-phosphatidylcholine and poloxamer. The optimization process was designed to select the formulation with maximum entrapment efficiency (EE %), maximum in-vitro drug release (Q8h), and minimum vesicle size (VS). The optimum formulation was then pegylated to obtain LP-NCVs-PEG formulation that shields NCVs from the harsh ecosystem of the stomach, improves their oral drug delivery performance and targets the proximal renal tubules with no systemic toxicity. Male albino rats were injected with Cisplatin (6 mg/kg, i.p.) alone or with LP-formulations (5 mg/kg/day). Kidney injury markers, inflammatory markers, apoptotic markers. Besides renal tissue expression of Wnt, ß-Catenin, GSK-3ß, renal RNA gene expression of TCF-4, LEF-1 and histopathology were also analyzed to display pharmacological study. KEY FINDINGS: The pharmacokinetics studies demonstrated that LP-NCVs-PEG boosted LP bioavailability approximately 3.61 times compared to LP oral solution. Besides LP-NCVs-PEG may have an intriguing kidney-targeted nanoplatform for acute renal injury via decreased renal toxicity markers, renal expression of LEF-1, GSK3-ß, caspase, TNF-α, NF-κB and TUNEL expression. Alternatively, increased renal tissue level of Bcl-2, wnt, ß-catenin and TCF-4. SIGNIFICANCE: LP-NCVs-PEG improved LP pharmacokinetics targeting the kidney and improved injury by activating wnt/ß-catenin/TCF-4 pathway, blocking apoptosis, inflammation and renal toxicity markers suggesting it might be successful nephroprotective adjuvant therapy.


Subject(s)
Acute Kidney Injury , Apoptosis , Cisplatin , Losartan , Polyethylene Glycols , Wnt Signaling Pathway , Animals , Male , Rats , Apoptosis/drug effects , Wnt Signaling Pathway/drug effects , Polyethylene Glycols/chemistry , Acute Kidney Injury/drug therapy , Acute Kidney Injury/chemically induced , Acute Kidney Injury/metabolism , Acute Kidney Injury/prevention & control , Acute Kidney Injury/pathology , Losartan/pharmacology , beta Catenin/metabolism , Nanoparticles/chemistry , Transcription Factor 4/metabolism , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Antineoplastic Agents/pharmacology , Rats, Wistar , Drug Liberation
2.
AAPS PharmSciTech ; 25(5): 115, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755324

ABSTRACT

More than 1 billion people worldwide suffer from hypertension; therefore, hypertension management has been categorized as a global health priority. Losartan potassium (LP) is an antihypertensive drug with a limited oral bioavailability of about 33% since it undergoes the initial metabolic cycle. Thus, nasal administration is a unique route to overcome first-pass metabolism. The investigation focused on the potential effects of LP-loaded spanlastic vesicles (SNVs) on LP pharmacodynamics and pharmacokinetic parameters, utilizing a thin-film hydration methodology established on a 3122 full factorial design. Entrapment efficiency (EE%) ranged from 39.8 ± 3.87.8 to 83.8 ± 2.92% for LP-SNVs. Vesicle size (VS) varied from 205.5 ± 6.5.10 to 445.1 ± 13.52 nm, and the percentage of LP released after 8 h (Q8h) ranged from 30.8 ± 3.10 to 68.8 ± 1.45%. LP permeated through the nasal mucosa during 24 h and flocculated from 194.1 ± 4.90 to 435.3 ± 13.53 µg/cm2. After twenty-four hours, the optimal LP-SNVs in-situ gel showed 2.35 times more permeation through the nasal mucosa than the LP solution. It also lowered systolic blood pressure, so it is thought to be better than the reference formulation in terms of pharmacodynamics. The pharmacokinetics studies demonstrated that the intranasal LP-SNVs gel boosted its bioavailability approximately 6.36 times compared to the oral LP solution. Our research showed that intranasal LP-SNVs could be a good nanoplatform because they are well-tolerated and have possible pharmacokinetics and pharmacodynamics.


Subject(s)
Angiotensin II Type 1 Receptor Blockers , Hypertension , Losartan , Nanoparticle Drug Delivery System , Animals , Rats , Administration, Intranasal , Angiotensin II/pharmacokinetics , Angiotensin II/administration & dosage , Angiotensin II/pharmacology , Angiotensin II Type 1 Receptor Blockers/chemistry , Angiotensin II Type 1 Receptor Blockers/pharmacology , Antihypertensive Agents/pharmacokinetics , Antihypertensive Agents/administration & dosage , Antihypertensive Agents/pharmacology , Biological Availability , Blood Pressure/drug effects , Chemistry, Pharmaceutical/methods , Gels/chemistry , Gels/pharmacology , Hypertension/drug therapy , Losartan/pharmacokinetics , Losartan/administration & dosage , Losartan/pharmacology , Nanoparticles/chemistry , Nasal Mucosa/metabolism , Nasal Mucosa/drug effects , Particle Size , Rats, Wistar , Nanoparticle Drug Delivery System/chemistry , Nanoparticle Drug Delivery System/pharmacology
3.
Pharmaceuticals (Basel) ; 15(9)2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36145327

ABSTRACT

The oral delivery of diclofenac sodium (DNa), a non-steroidal analgesic, anti-inflammatory drug, is associated with various gastrointestinal side effects. The aim of the research was to appraise the potential of transdermal delivery of DNa using bilosomes as a vesicular carrier (BSVC) in inflamed paw edema. DNa-BSVCs were elaborated using a thin-film hydration technique and optimized using a 31.22 multilevel categoric design with Design Expert® software 10 software (Stat-Ease, Inc., Minneapolis, MI, USA). The effect of formulation variables on the physicochemical properties of BSVC, as well as the optimal formulation selection, was investigated. The BSVCs were evaluated for various parameters including entrapment efficiency (EE%), vesicle size (VS), zeta potential (ZP) and permeation studies. The optimized BSVC was characterized for in vitro release, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and incorporated into hydrogel base. The optimized DNa-BSVC gel effectiveness was assessed in vivo using carrageenan-induced paw edema animal model via cyclooxygenase 2 (COX-2), interleukin 6 (IL-6), Hemooxygenase 1 (HO-1) and nuclear factor-erythroid factor2-related factor 2 (Nfr-2) that potentiate anti-inflammatory and anti-oxidant activity coupled with histopathological investigation. The resulting vesicles presented VS from 120.4 ± 0.65 to 780.4 ± 0.99 nm, EE% from 61.7 ± 3.44 to 93.2 ± 2.21%, ZP from -23.8 ± 2.65 to -82.1 ± 12.63 mV and permeation from 582.9 ± 32.14 to 1350.2 ± 45.41 µg/cm2. The optimized BSVCs were nano-scaled spherical vesicles with non-overlapped bands of their constituents in the FTIR. Optimized formulation has superior skin permeability ex vivo approximately 2.5 times greater than DNa solution. Furthermore, histological investigation discovered that the formed BSVC had no skin irritating properties. It was found that DNa-BSVC gel suppressed changes in oxidative inflammatory mediators (COX-2), IL-6 and consequently enhanced Nrf2 and HO-1 levels. Moreover, reduction of percent of paw edema by about three-folds confirmed histopathological alterations. The results revealed that the optimized DNa-BSVC could be a promising transdermal drug delivery system to boost anti-inflammatory efficacy of DNa by enhancing the skin permeation of DNa and suppressing the inflammation of rat paw edema.

4.
AAPS PharmSciTech ; 21(3): 113, 2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32291553

ABSTRACT

The aim of this was to develop a well-balanced, replaceable, and patient non-infringing innovative transdermal drug delivery system "nano-vesicle transdermal gel" (NVTG) approaches for inhibiting inflammation. To consummate this objective, we developed a skin permeation nanogel system containing surface active agent along with ethanol. Carbopol 971p, hydroxypropyl methyl cellulose (HPMC K15M), and chitosan were used to fabricate the nanogels. The nanogel system was evaluated for pH, content uniformity, spreadability, rheological studies, in vitro skin permeation, and drug release. Carbapol 971p with the desired in vitro skin permeation was utilized to investigate skin irritation test and effects on inflammation using acute inflammatory paw edema models. Moreover, in vivo pharmacokinetic study was assessed. pH of this nanogels was found within the range of 6.1-7.2, whereas the viscosity was found 310.13 to 6361 cps. The ex vivo skin permeation gels showed permeation flux range, 5.9 ± 0.80 to 17.92 ± 1.13 µg/cm2 h. The highest permeation flux (17.92 ± 1.13 µg/cm2 h) was observed, which was 3.14-folds higher than that of the plain DH gel (10.72 ± 0.84 µg/cm2 h. Additionally, from toxicological study, no obvious signs of toxicity such as skin irritation (of laboratory rats) were identified. The in vivo anti-inflammatory behavior in carrageenan-induced rats showed comparatively higher inhibition of rat paw edema swelling by the prepared nanogel compared to that of the plain DH gel and marketed ibuprofen over 6 h. The amount of drug accumulated in the skin after topical application was much higher than oral application. In conclusion, developed NVTG formulation loaded with dapoxetine HCl (DH) offers new opportunities for creating novel therapeutic modality for inflammation patients with fewer adverse effects.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Benzylamines/administration & dosage , Drug Delivery Systems , Edema/drug therapy , Naphthalenes/administration & dosage , Administration, Cutaneous , Animals , Carrageenan/pharmacology , Female , Gels , Male , Rats , Rats, Wistar
5.
Drug Deliv ; 26(1): 1140-1154, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31736366

ABSTRACT

The current study aimed to encapsulate fluvastatin sodium (FVS), a member of the statins family possessing pleiotropic effects in rheumatoid arthritis (RA), into spanlastic nanovesicles (SNVs) for transdermal delivery. This novel delivery could surmount FVS associated oral encumbrances such as apparent first-pass effect, poor bioavailability and short elimination half-life, hence, accomplishing platform for management of RA. To consummate this objective, FVS-loaded SNVs were elaborated by thin film hydration method, utilizing either Span 60 or Span 80, together with Tween 80 or Brij 35 as an edge activator according to full factorial design (24). Applying Design-Expert® software, the influence of formulation variables on SNVs physicochemical properties and the optimized formulation selection were explored. Additionally, the pharmacokinetic studies were scrutinized in rats. Furthermore, in Freund's adjuvant-induced arthritis, rheumatoid markers, TNF-α, IL-10, p38 MAPK, and antioxidant parameters were measured. The optimum SNVs were nano-scaled spherical vesicles (201.54 ± 9.16 nm), having reasonable entrapment efficiency (71.28 ± 2.05%), appropriate release over 8 h (89.45 ± 3.64%) and adequate permeation characteristics across the skin (402.55 ± 27.48 µg/cm2). The pharmacokinetic study disclosed ameliorated bioavailability of the optimum SNVs gel by 2.79- and 4.59-fold as compared to the oral solution as well as the traditional gel, respectively. Moreover, it elicited a significant suppression of p38 MAPK expression and also significant improvement of all other measured biomarkers. Concisely, the foregoing findings proposed that SNVs can be auspicious for augmenting FVS transdermal delivery for management of RA.


Subject(s)
Arthritis, Rheumatoid/chemically induced , Arthritis, Rheumatoid/drug therapy , Fluvastatin/administration & dosage , Freund's Adjuvant/pharmacology , Signal Transduction/drug effects , Skin/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Administration, Cutaneous , Animals , Arthritis, Experimental/chemically induced , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/metabolism , Biological Availability , Drug Carriers/chemistry , Drug Delivery Systems/methods , Female , Particle Size , Permeability , Rats , Rats, Wistar , Skin Absorption
SELECTION OF CITATIONS
SEARCH DETAIL