Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinformatics ; 38(1): 299-300, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34260694

ABSTRACT

MOTIVATION: Reference sequences are essential in creating a baseline of knowledge for many common bioinformatics methods, especially those using genomic sequencing. RESULTS: We have created refget, a Global Alliance for Genomics and Health API specification to access reference sequences and sub-sequences using an identifier derived from the sequence itself. We present four reference implementations across in-house and cloud infrastructure, a compliance suite and a web report used to ensure specification conformity across implementations. AVAILABILITY AND IMPLEMENTATION: The refget specification can be found at: https://w3id.org/ga4gh/refget. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Genomics , Software
2.
Nat Genet ; 49(12): 1714-1721, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29083405

ABSTRACT

By analyzing multitissue gene expression and genome-wide genetic variation data in samples from a vervet monkey pedigree, we generated a transcriptome resource and produced the first catalog of expression quantitative trait loci (eQTLs) in a nonhuman primate model. This catalog contains more genome-wide significant eQTLs per sample than comparable human resources and identifies sex- and age-related expression patterns. Findings include a master regulatory locus that likely has a role in immune function and a locus regulating hippocampal long noncoding RNAs (lncRNAs), whose expression correlates with hippocampal volume. This resource will facilitate genetic investigation of quantitative traits, including brain and behavioral phenotypes relevant to neuropsychiatric disorders.


Subject(s)
Chlorocebus aethiops/genetics , Gene Expression Profiling , Genetic Variation , Quantitative Trait Loci/genetics , Animals , Brain/growth & development , Brain/metabolism , Chlorocebus aethiops/growth & development , Genome-Wide Association Study , Genotype , Humans , Phenotype , Polymorphism, Single Nucleotide
3.
Nucleic Acids Res ; 45(D1): D635-D642, 2017 01 04.
Article in English | MEDLINE | ID: mdl-27899575

ABSTRACT

Ensembl (www.ensembl.org) is a database and genome browser for enabling research on vertebrate genomes. We import, analyse, curate and integrate a diverse collection of large-scale reference data to create a more comprehensive view of genome biology than would be possible from any individual dataset. Our extensive data resources include evidence-based gene and regulatory region annotation, genome variation and gene trees. An accompanying suite of tools, infrastructure and programmatic access methods ensure uniform data analysis and distribution for all supported species. Together, these provide a comprehensive solution for large-scale and targeted genomics applications alike. Among many other developments over the past year, we have improved our resources for gene regulation and comparative genomics, and added CRISPR/Cas9 target sites. We released new browser functionality and tools, including improved filtering and prioritization of genome variation, Manhattan plot visualization for linkage disequilibrium and eQTL data, and an ontology search for phenotypes, traits and disease. We have also enhanced data discovery and access with a track hub registry and a selection of new REST end points. All Ensembl data are freely released to the scientific community and our source code is available via the open source Apache 2.0 license.


Subject(s)
Computational Biology/methods , Databases, Genetic , Genomics/methods , Search Engine , Software , Web Browser , Animals , Data Mining , Evolution, Molecular , Gene Expression Regulation , Genetic Variation , Genome, Human , Humans , Molecular Sequence Annotation , Species Specificity , Vertebrates
4.
Article in English | MEDLINE | ID: mdl-27337980

ABSTRACT

The Ensembl gene annotation system has been used to annotate over 70 different vertebrate species across a wide range of genome projects. Furthermore, it generates the automatic alignment-based annotation for the human and mouse GENCODE gene sets. The system is based on the alignment of biological sequences, including cDNAs, proteins and RNA-seq reads, to the target genome in order to construct candidate transcript models. Careful assessment and filtering of these candidate transcripts ultimately leads to the final gene set, which is made available on the Ensembl website. Here, we describe the annotation process in detail.Database URL: http://www.ensembl.org/index.html.


Subject(s)
Databases, Nucleic Acid , Databases, Protein , Internet , Molecular Sequence Annotation/methods , Animals , Humans , Mice
5.
Nucleic Acids Res ; 44(D1): D710-6, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26687719

ABSTRACT

The Ensembl project (http://www.ensembl.org) is a system for genome annotation, analysis, storage and dissemination designed to facilitate the access of genomic annotation from chordates and key model organisms. It provides access to data from 87 species across our main and early access Pre! websites. This year we introduced three newly annotated species and released numerous updates across our supported species with a concentration on data for the latest genome assemblies of human, mouse, zebrafish and rat. We also provided two data updates for the previous human assembly, GRCh37, through a dedicated website (http://grch37.ensembl.org). Our tools, in particular the VEP, have been improved significantly through integration of additional third party data. REST is now capable of larger-scale analysis and our regulatory data BioMart can deliver faster results. The website is now capable of displaying long-range interactions such as those found in cis-regulated datasets. Finally we have launched a website optimized for mobile devices providing views of genes, variants and phenotypes. Our data is made available without restriction and all code is available from our GitHub organization site (http://github.com/Ensembl) under an Apache 2.0 license.


Subject(s)
Databases, Genetic , Genomics , Molecular Sequence Annotation , Animals , Genes , Genetic Variation , Humans , Internet , Mice , Proteins/genetics , Rats , Regulatory Sequences, Nucleic Acid , Software
6.
Genome Res ; 25(12): 1921-33, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26377836

ABSTRACT

We describe a genome reference of the African green monkey or vervet (Chlorocebus aethiops). This member of the Old World monkey (OWM) superfamily is uniquely valuable for genetic investigations of simian immunodeficiency virus (SIV), for which it is the most abundant natural host species, and of a wide range of health-related phenotypes assessed in Caribbean vervets (C. a. sabaeus), whose numbers have expanded dramatically since Europeans introduced small numbers of their ancestors from West Africa during the colonial era. We use the reference to characterize the genomic relationship between vervets and other primates, the intra-generic phylogeny of vervet subspecies, and genome-wide structural variations of a pedigreed C. a. sabaeus population. Through comparative analyses with human and rhesus macaque, we characterize at high resolution the unique chromosomal fission events that differentiate the vervets and their close relatives from most other catarrhine primates, in whom karyotype is highly conserved. We also provide a summary of transposable elements and contrast these with the rhesus macaque and human. Analysis of sequenced genomes representing each of the main vervet subspecies supports previously hypothesized relationships between these populations, which range across most of sub-Saharan Africa, while uncovering high levels of genetic diversity within each. Sequence-based analyses of major histocompatibility complex (MHC) polymorphisms reveal extremely low diversity in Caribbean C. a. sabaeus vervets, compared to vervets from putatively ancestral West African regions. In the C. a. sabaeus research population, we discover the first structural variations that are, in some cases, predicted to have a deleterious effect; future studies will determine the phenotypic impact of these variations.


Subject(s)
Chlorocebus aethiops/genetics , Genome , Genomics , Animals , Chlorocebus aethiops/classification , Chromosome Painting , Computational Biology/methods , Evolution, Molecular , Gene Rearrangement , Genetic Variation , Genomics/methods , Karyotype , Major Histocompatibility Complex/genetics , Molecular Sequence Annotation , Phylogeny , Phylogeography
7.
Nucleic Acids Res ; 43(Database issue): D662-9, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25352552

ABSTRACT

Ensembl (http://www.ensembl.org) is a genomic interpretation system providing the most up-to-date annotations, querying tools and access methods for chordates and key model organisms. This year we released updated annotation (gene models, comparative genomics, regulatory regions and variation) on the new human assembly, GRCh38, although we continue to support researchers using the GRCh37.p13 assembly through a dedicated site (http://grch37.ensembl.org). Our Regulatory Build has been revamped to identify regulatory regions of interest and to efficiently highlight their activity across disparate epigenetic data sets. A number of new interfaces allow users to perform large-scale comparisons of their data against our annotations. The REST server (http://rest.ensembl.org), which allows programs written in any language to query our databases, has moved to a full service alongside our upgraded website tools. Our online Variant Effect Predictor tool has been updated to process more variants and calculate summary statistics. Lastly, the WiggleTools package enables users to summarize large collections of data sets and view them as single tracks in Ensembl. The Ensembl code base itself is more accessible: it is now hosted on our GitHub organization page (https://github.com/Ensembl) under an Apache 2.0 open source license.


Subject(s)
Databases, Nucleic Acid , Genomics , Animals , Epigenesis, Genetic , Genetic Variation , Genome, Human , Humans , Internet , Mice , Molecular Sequence Annotation , Regulatory Sequences, Nucleic Acid , Software
8.
Nucleic Acids Res ; 42(Database issue): D749-55, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24316576

ABSTRACT

Ensembl (http://www.ensembl.org) creates tools and data resources to facilitate genomic analysis in chordate species with an emphasis on human, major vertebrate model organisms and farm animals. Over the past year we have increased the number of species that we support to 77 and expanded our genome browser with a new scrollable overview and improved variation and phenotype views. We also report updates to our core datasets and improvements to our gene homology relationships from the addition of new species. Our REST service has been extended with additional support for comparative genomics and ontology information. Finally, we provide updated information about our methods for data access and resources for user training.


Subject(s)
Databases, Genetic , Genomics , Animals , Chordata/genetics , Genetic Variation , Humans , Internet , Mice , Molecular Sequence Annotation , Phenotype , Rats
9.
Nucleic Acids Res ; 41(Database issue): D48-55, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23203987

ABSTRACT

The Ensembl project (http://www.ensembl.org) provides genome information for sequenced chordate genomes with a particular focus on human, mouse, zebrafish and rat. Our resources include evidenced-based gene sets for all supported species; large-scale whole genome multiple species alignments across vertebrates and clade-specific alignments for eutherian mammals, primates, birds and fish; variation data resources for 17 species and regulation annotations based on ENCODE and other data sets. Ensembl data are accessible through the genome browser at http://www.ensembl.org and through other tools and programmatic interfaces.


Subject(s)
Databases, Genetic , Genomics , Animals , Gene Expression Regulation , Genetic Variation , Humans , Internet , Mice , Molecular Sequence Annotation , Rats , Software , Zebrafish/genetics
SELECTION OF CITATIONS
SEARCH DETAIL