Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Complement Altern Med ; 17(1): 275, 2017 May 23.
Article in English | MEDLINE | ID: mdl-28535783

ABSTRACT

BACKGROUND: The search for alternative trypanocidal compounds which can be available at affordable price is of paramount importance for control of trypanosomosis in human and animals. The current study evaluates the in vivo activity of ethanolic stem bark extracts on Trypanosoma congolense and selected immunological components in an inbred Swiss albino mouse model. METHODS: Groups of mice infected with T. congolense were treated with the stem bark extracts at a rate of 1000 mg/kg, 1500 mg/kg, and 2000 mg/kg, twice a day in one set and thrice a day in another setting for three days consecutively. Negative (infected and untreated) and positive (infected treated with diminazene diaceturate at 3.5 mg/kg) control groups were used. Levels of parasitaemia were monitored daily for the first 10 days and thereafter 2-3 times per week to the end of experiment. In the other setting, uninfected mice, randomized in groups were treated with the extract but categorized as: thorough mixed extract (TME) and supernatant extract (SE) each at 500 mg/kg and 1500 mg/kg, in 8 hourly intervals respectively for three days consecutively. Control group was administered with phosphate buffered saline with glucose at 0.1 ml/10 g in a similar manner as for the extract. Whole blood and spleen were taken 24 h after the last treatment for hematological and histopathological analysis. RESULTS: The groups that received the extracts at 8 hourly intervals drastically reduced the parasitaemia. The higher dose of SE significantly reduced the percentage of lymphocytes (P < 0.05). Both high and low dose of TME significantly reduced lymphocytes percent (P < 0.05) while percent of neutrophils and monocytes increased significantly (P < 0.05). Histopathological changes of the spleen in the mice treated with higher concentrations of the extract of C. swynnertonii were suggestive of lymphocytes toxicity. CONCLUSION: The current study has provided evidence that, in vivo trypanocidal activity of ethanolic bark extracts of C. swynnertonii is probably affected by its negative effect on humoral mediated immune response. Further studies are recommended to determine its potential as an alternative source of lead compounds for trypanocidal drug discovery.


Subject(s)
Commiphora/chemistry , Plant Extracts/administration & dosage , Trypanocidal Agents/administration & dosage , Trypanosoma congolense/drug effects , Trypanosomiasis, African/drug therapy , Animals , Disease Models, Animal , Humans , Male , Mice , Phytotherapy , Plant Bark/chemistry , Plant Extracts/isolation & purification , Treatment Outcome , Trypanocidal Agents/isolation & purification , Trypanosoma congolense/physiology , Trypanosomiasis, African/parasitology
2.
J Vector Borne Dis ; 54(1): 16-24, 2017.
Article in English | MEDLINE | ID: mdl-28352042

ABSTRACT

Glossina swynnertoni is a savannah tsetse that is largely confined to the Serengeti-Mara [a very small part of East Africa covering northern Tanzania (Arusha and Manyara regions and parts of Shinyanga and Mara regions) extending Maasai Mara ecosystem in southwestern Kenya]. Nevertheless, it is of great concern to human and animal health and is one of the top target tsetse species for eradication. To achieve this eradication objective, it is important to know about its behaviour so that the appropriate tools/measures especially the right traps can be applied against it. In this paper G. swynnertoni is reviewed in terms of its behaviour, and development of traps for its survey and control. Glossina swynnertoni control is of paramount importance in Tanzania tourism industry and country's income. Since, G. swynnertoni is also distributed in national parks, control is vital as it might reduce tourists excursion/movement, by transmitting the African trypanosomiasis among travelers. Different literature search engines such as Google Scholar and PubMed were deployed for literature search. It was found that the behaviour of G. swynnertoni is relatively similar but unique from other tsetse flies. Its feeding cycle is 2½-3 days as opposed to 3-4 days observed in other tsetse species. The flight activity pattern varied between sex, with male having their peak at 1100-1200 hrs and females 1400-1600 hrs. The activity in both sexes decline rapidly towards the dusk (1700-1800 hrs). It was further that host odours, relatively smaller and vertically oriented devices, as well as host movement are the main attractive factors to this tsetse species, which can be exploited to design efficient artificial devices for control of G. swynnertoni . Therefore, due to its restricted distribution and threat it poses on tourism industry, deliberate efforts need to be made against G. swynnertoni as a next candidate to be eradicated using artificial bait technology.


Subject(s)
Behavior, Animal , Insect Control/methods , Insect Vectors , Tsetse Flies/physiology , Animals , Entomology/methods , Female , Kenya , Male , Tanzania
3.
BMC Complement Altern Med ; 16: 195, 2016 Jul 08.
Article in English | MEDLINE | ID: mdl-27392030

ABSTRACT

BACKGROUND: African trypanosomosis is the disease caused by extracellular protozoan parasites of the genus Trypanosoma transmitted by tsetse flies. The current study has evaluated the trypanocidal activity of Commiphora swynnertonii extracts on Trypanosoma congolense. METHODS: The effect of ethanolic stem bark and resinous extracts on motility of T. congolense was evaluated by in vitro study at concentrations of 2 mg/ml and 4 mg/ml. Then, trypanocidal activity was evaluated by drug incubation infectivity test using mice at concentrations of 0.4 mg/ml and 2 mg/ml. In both studies negative (without drug) and positive (diminazene diaceturate) controls were used. RESULTS: The in vitro study showed that, ethanolic stem bark extract of C. swynnertonii at concentration of 4 mg/ml caused complete cessation of motility for T. congolense in 30 min. However, resinous ethanolic extract had delayed effect on cessation of motility of T. congolense observed at 90 and 100 min post-incubation at concentrations of 4 mg/ml and 2 mg/ml respectively. The drug incubation infectivity test study depicted that ethanolic stem bark extract at concentration of 2 mg/ml significantly (p = 0.000) reduced the infectivity of T. congolense in mice. However, it did not vary significantly (P =0.897) with group treated with diminazene diaceturate incubated mixture. CONCLUSION: The current study has provided evidence that, ethanolic stem bark extract of C. swynnertonii possess trypanocidal activity against T. congolense. Based on these findings, further studies are recommended to determine its potential as a lead to trypanocidal drug discovery.


Subject(s)
Commiphora/chemistry , Plant Extracts/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma congolense/drug effects , Animals , Ethanol , Female , Male , Mice , Plant Extracts/chemistry , Trypanocidal Agents/chemistry , Trypanosomiasis, African/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...