Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
JCO Glob Oncol ; 10: e2300216, 2024 May.
Article in English | MEDLINE | ID: mdl-38723219

ABSTRACT

PURPOSE: Breast cancer mortality rates in Latin America (LA) are higher than those in the United States, possibly because of advanced disease presentation, health care disparities, or unfavorable molecular subtypes. The Latin American Cancer Research Network was established to address these challenges and to promote collaborative clinical research. The Molecular Profiling of Breast Cancer Study (MPBCS) aimed to evaluate the clinical characteristics and treatment outcomes of LA participants with locally advanced breast cancer (LABC). PATIENTS AND METHODS: The MPBCS enrolled 1,449 participants from Argentina, Brazil, Chile, Mexico, and Uruguay. Through harmonized procedures and quality assurance measures, this study evaluated clinicopathologic characteristics, neoadjuvant chemotherapy response, and survival outcomes according to residual cancer burden (RCB) and the type of surgery. RESULTS: Overall, 711 and 480 participants in the primary surgery and neoadjuvant arms, respectively, completed the 5-year follow-up period. Overall survival was independently associated with RCB (worse survival for RCBIII-adjusted hazard ratio, 8.19, P < .001, and RCBII [adjusted hazard ratio, 3.69, P < .008] compared with RCB0 [pathologic complete response or pCR]) and type of surgery (worse survival in mastectomy than in breast-conserving surgery [BCS], adjusted hazard ratio, 2.97, P = .001). The hormone receptor-negative-human epidermal growth factor receptor 2-positive group had the highest proportion of pCR (48.9%). The analysis of the ASCO Quality Oncology Practice Initiative breast module revealed high compliance with pathologic standards but lower adherence to treatment administration standards. Notably, compliance with trastuzumab administration varied widely among countries (33.3%-88.7%). CONCLUSION: In LABC, we demonstrated the survival benefit of BCS and the prognostic effect of the response to available neoadjuvant treatments despite an important variability in access to key treatments. The MPBCS represents a significant step forward in understanding the real-world implementation of oncologic procedures in LA.


Subject(s)
Breast Neoplasms , Neoadjuvant Therapy , Humans , Breast Neoplasms/therapy , Breast Neoplasms/diagnosis , Breast Neoplasms/pathology , Breast Neoplasms/mortality , Female , Middle Aged , Latin America/epidemiology , Adult , Aged
2.
J Endocr Soc ; 8(6): bvae059, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38655100

ABSTRACT

Context: Genetic analysis of sporadic medullary thyroid carcinoma (MTC) has revealed somatic variants in RET, RAS, and occasionally other genes. However, around 20% of patients with sporadic MTC lack a known genetic driver. Objective: To uncover potential new somatic or germline drivers, we analyze a distinct cohort of patients with sporadic, very early-onset, and aggressive MTC. Methods: Germline and somatic DNA exome sequencing was performed in 19 patients, previously tested negative for germline RET variants. Results: Exome sequencing of 19 germline samples confirmed the absence of RET and identified an NF1 pathogenic variant in 1 patient. Somatic sequencing was successful in 15 tumors revealing RET variants in 80%, predominantly p.Met918Thr, which was associated with disease aggressiveness. In RET-negative tumors, pathogenic variants were found in HRAS and NF1. The NF1 germline and somatic variants were observed in a patient without a prior clinical diagnosis of neurofibromatosis type 1, demonstrating that the loss of heterozygosity of NF1 functions as a potential MTC driver. Somatic copy number alterations analysis revealed chromosomal alterations in 53.3% of tumors, predominantly in RET-positive cases, with losses in chromosomes 9 and 22 being the most prevalent. Conclusion: This study reveals that within a cohort of early-onset nonhereditary MTC, RET remains the major driver gene. In RET-negative tumors, NF1 and RAS are drivers of sporadic MTC. In addition, in young patients without a RET germline mutation, a careful clinical evaluation with a consideration of germline NF1 gene analysis is ideal to exclude Neurofibromatosis type 1 (NF1).

4.
Cancers (Basel) ; 15(21)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37958292

ABSTRACT

BACKGROUND: Several tumor-associated macrophages (TAMs) have shown promise as prognosticators in cancer. Our aim was to validate the importance of TAMs in malignant pleural mesothelioma (MPM) using a two-stage design. METHODS: We explored The Cancer Genome Atlas (TCGA-MESO) to select immune-relevant macrophage genes in MPM, including M1/M2 markers, as a discovery cohort. This computational cohort was used to create a multiplex immunofluorescence panel. Moreover, a cohort of 68 samples of MPM in paraffin blocks was used to validate the macrophage phenotypes and the co-localization and spatial distribution of these immune cells within the TME and the stromal or tumor compartments. RESULTS: The discovery cohort revealed six immune-relevant macrophage genes (CD68, CD86, CD163, CD206, ARG1, CD274), and complementary genes were differentially expressed by M1 and M2 phenotypes with distinct roles in the tumor microenvironment and were associated with the prognosis. In addition, immune-suppressed MPMs with increased enrichment of CD68, CD86, and CD163 genes and high densities of M2 macrophages expressing CD163 and CD206 proteins were associated with worse overall survival (OS). Interestingly, below-median distances from malignant cells to specific M2a and M2c macrophages were associated with worse OS, suggesting an M2 macrophage-driven suppressive component in these tumors. CONCLUSIONS: The interactions between TAMs in situ and, particularly, CD206+ macrophages are highly relevant to patient outcomes. High-resolution technology is important for identifying the roles of macrophage populations in tissue specimens and identifying potential therapeutic candidates in MPM.

5.
Neurosci Lett ; 816: 137506, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37778686

ABSTRACT

Substance use disorders have been associated with alterations in the oxytocinergic system, but few studies have investigated both the peptide and epigenetic mechanisms potentially implicated in the regulation of oxytocin receptor. In this study, we compared plasma oxytocin and blood DNA methylation in the OXTR gene between people with and without cocaine use disorder (CUD). We measured the oxytocin levels of 51 people with CUD during acute abstinence and of 30 healthy controls using an enzyme immunoassay. The levels of DNA methylation in four CpG sites at exon III of the OXTR gene were evaluated in a subsample using pyrosequencing. The Addiction Severity Index was used to assess clinical characteristics. We found higher oxytocin levels in men with CUD (56.5 pg/mL; 95% CI: 48.2-64.7) than in control men (33.6 pg/mL; 95% CI: 20.7-46.5), while no differences between women with and without CUD were detected. With a moderate effect size, the interaction effect between group and sex remained significant when controlling for height, weight and age data. A positive correlation in the CUD sample was found between oxytocin levels and days of psychological suffering prior to treatment enrollment. No group differences were observed regarding DNA methylation data. This suggests that CUD is associated with higher peripheral oxytocin levels in men during acute abstinence. This finding may be considered in future studies that aim at using exogenous oxytocin as a potential treatment for cocaine addiction.


Subject(s)
Cocaine-Related Disorders , Cocaine , Oxytocin , Receptors, Oxytocin , Female , Humans , Male , DNA Methylation , Epigenesis, Genetic , Oxytocin/blood , Receptors, Oxytocin/genetics , Receptors, Oxytocin/metabolism , Cocaine-Related Disorders/blood , Cocaine-Related Disorders/genetics
6.
Med Sci Sports Exerc ; 55(2): 199-208, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36136603

ABSTRACT

INTRODUCTION: DNA methylation regulates exercise-induced changes in the skeletal muscle transcriptome. However, the specificity and the time course responses in the myogenic regulatory factors DNA methylation and mRNA expression after divergent exercise modes are unknown. PURPOSE: This study aimed to compare the time course changes in DNA methylation and mRNA expression for selected myogenic regulatory factors ( MYOD1 , MYF5 , and MYF6 ) immediately after, 4 h after, and 8 h after a single bout of resistance exercise (RE), high-intensity interval exercise (HIIE), and concurrent exercise (CE). METHODS: Nine healthy but untrained males (age, 23.9 ± 2.8 yr; body mass, 70.1 ± 14.9 kg; peak oxygen uptake [V̇O 2peak ], 41.4 ± 5.2 mL·kg -1 ·min -1 ; mean ± SD) performed a counterbalanced, randomized order of RE (4 × 8-12 repetition maximum), HIIE (12 × 1 min sprints at V̇O 2peak running velocity), and CE (RE followed by HIIE). Skeletal muscle biopsies (vastus lateralis) were taken before (REST) immediately (0 h), 4 h, and 8 h after each exercise bout. RESULTS: Compared with REST, MYOD1 , MYF5 , and MYF6 , mean methylation across all CpGs analyzed was reduced after 4 and 8 h in response to all exercise protocols ( P < 0.05). Reduced levels of MYOD1 methylation were observed after HIIE and CE compared with RE ( P < 0.05). Compared with REST, all exercise bouts increased mRNA expression over time ( MYOD1 at 4 and 8 h, and MYF6 at 4 h; P < 0.05). MYF5 mRNA expression was lower after 4 h compared with 0 h and higher at 8 h compared with 4 h ( P < 0.05). CONCLUSIONS: We observed an interrelated but not time-aligned response between the exercise-induced changes in myogenic regulatory factors demethylation and mRNA expression after divergent exercise modes. Despite divergent contractile stimuli, changes in DNA methylation and mRNA expression in skeletal muscle were largely confined to the late (4-8 h) recovery period and similar between the different exercise challenges.


Subject(s)
Exercise , Myogenic Regulatory Factors , Male , Humans , Young Adult , Adult , Myogenic Regulatory Factors/genetics , Myogenic Regulatory Factors/metabolism , Exercise/physiology , Muscle, Skeletal/physiology , RNA, Messenger/metabolism , Demethylation
7.
Front Oncol ; 12: 845527, 2022.
Article in English | MEDLINE | ID: mdl-35530311

ABSTRACT

Molecular profile of breast cancer in Latin-American women was studied in five countries: Argentina, Brazil, Chile, Mexico, and Uruguay. Data about socioeconomic characteristics, risk factors, prognostic factors, and molecular subtypes were described, and the 60-month overall cumulative survival probabilities (OS) were estimated. From 2011 to 2013, 1,300 eligible Latin-American women 18 years or older, with a diagnosis of breast cancer in clinical stage II or III, and performance status ≦̸1 were invited to participate in a prospective cohort study. Face-to-face interviews were conducted, and clinical and outcome data, including death, were extracted from medical records. Unadjusted associations were evaluated by Chi-squared and Fisher's exact tests and the OS by Kaplan-Meier method. Log-rank test was used to determine differences between cumulative probability curves. Multivariable adjustment was carried out by entering potential confounders in the Cox regression model. The OS at 60 months was 83.9%. Multivariable-adjusted death hazard differences were found for women living in Argentina (2.27), Chile (1.95), and Uruguay (2.42) compared with Mexican women, for older (≥60 years) (1.84) compared with younger (≤40 years) women, for basal-like subtype (5.8), luminal B (2.43), and HER2-enriched (2.52) compared with luminal A subtype, and for tumor clinical stages IIB (1.91), IIIA (3.54), and IIIB (3.94) compared with stage IIA women. OS was associated with country of residence, PAM50 intrinsic subtype, age, and tumor stage at diagnosis. While the latter is known to be influenced by access to care, including cancer screening, timely diagnosis and treatment, including access to more effective treatment protocols, it may also influence epigenetic changes that, potentially, impact molecular subtypes. Data derived from heretofore understudied populations with unique geographic ancestry and sociocultural experiences are critical to furthering our understanding of this complexity.

8.
Front Oncol ; 12: 835626, 2022.
Article in English | MEDLINE | ID: mdl-35433488

ABSTRACT

Purposes: Most molecular-based published studies on breast cancer do not adequately represent the unique and diverse genetic admixture of the Latin American population. Searching for similarities and differences in molecular pathways associated with these tumors and evaluating its impact on prognosis may help to select better therapeutic approaches. Patients and Methods: We collected clinical, pathological, and transcriptomic data of a multi-country Latin American cohort of 1,071 stage II-III breast cancer patients of the Molecular Profile of Breast Cancer Study (MPBCS) cohort. The 5-year prognostic ability of intrinsic (transcriptomic-based) PAM50 and immunohistochemical classifications, both at the cancer-specific (OSC) and disease-free survival (DFS) stages, was compared. Pathway analyses (GSEA, GSVA and MetaCore) were performed to explore differences among intrinsic subtypes. Results: PAM50 classification of the MPBCS cohort defined 42·6% of tumors as LumA, 21·3% as LumB, 13·3% as HER2E and 16·6% as Basal. Both OSC and DFS for LumA tumors were significantly better than for other subtypes, while Basal tumors had the worst prognosis. While the prognostic power of traditional subtypes calculated with hormone receptors (HR), HER2 and Ki67 determinations showed an acceptable performance, PAM50-derived risk of recurrence best discriminated low, intermediate and high-risk groups. Transcriptomic pathway analysis showed high proliferation (i.e. cell cycle control and DNA damage repair) associated with LumB, HER2E and Basal tumors, and a strong dependency on the estrogen pathway for LumA. Terms related to both innate and adaptive immune responses were seen predominantly upregulated in Basal tumors, and, to a lesser extent, in HER2E, with respect to LumA and B tumors. Conclusions: This is the first study that assesses molecular features at the transcriptomic level in a multicountry Latin American breast cancer patient cohort. Hormone-related and proliferation pathways that predominate in PAM50 and other breast cancer molecular classifications are also the main tumor-driving mechanisms in this cohort and have prognostic power. The immune-related features seen in the most aggressive subtypes may pave the way for therapeutic approaches not yet disseminated in Latin America. Clinical Trial Registration: ClinicalTrials.gov (Identifier: NCT02326857).

9.
Breast Cancer Res Treat ; 192(1): 43-52, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35031902

ABSTRACT

PURPOSE: Breast cancer (BC) is considered a heterogeneous disease composed of distinct subtypes with diverse clinical outcomes. Luminal subtype tumors have the best prognosis, and patients benefit from endocrine therapy. However, resistance to endocrine therapies in BC is an obstacle to successful treatment, and novel biomarkers are needed to understand and overcome this mechanism. The RET, BCAR1, and BCAR3 genes may be associated with BC progression and endocrine resistance. METHODS: Aiming to evaluate the expression profile and prognostic value of RET, BCAR1, and BCAR3, we performed immunohistochemistry on tissue microarrays (TMAs) containing a cohort of 361 Luminal subtype BC. RESULTS: Low expression levels of these three proteins were predominantly observed. BCAR1 expression was correlated with nuclear grade (p = 0.057), and BCAR3 expression was correlated with lymph node status (p = 0.011) and response to hormonal therapy (p = 0.021). Further, low expression of either BCAR1 or BCAR3 was significantly associated with poor prognosis (p = 0.005; p = 0.042). Pairwise analysis showed that patients with tumors with low BCAR1/low BCAR3 expression had a poorer overall survival (p = 0.013), and the low BCAR3 expression had the worst prognosis with RET high expression stratifying these patients into two different groups. Regarding the response to hormonal therapy, non-responder patients presented lower expression of RET in comparison to the responder group (p = 0.035). Additionally, the low BCAR1 expression patients had poorer outcomes than BCAR1 high (p = 0.015). CONCLUSION: Our findings suggest RET, BCAR1, and BCAR3 as potential candidate markers for endocrine therapy resistance in Luminal BC.


Subject(s)
Breast Neoplasms , Adaptor Proteins, Signal Transducing/metabolism , Biomarkers, Tumor/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Crk-Associated Substrate Protein , Female , Guanine Nucleotide Exchange Factors , Humans , Immunohistochemistry , Prognosis , Proto-Oncogene Proteins c-ret
10.
Toxicology ; 463: 152970, 2021 11.
Article in English | MEDLINE | ID: mdl-34606951

ABSTRACT

Intrauterine exposure to particulate matter (PM) has been associated with an increased risk of asthma development, which may differ by the age of asthma onset, sex, and pollutant concentration. To investigate the pulmonary effects of in utero exposure to concentrated urban ambient particles (CAPs) in response to house dust mite (HDM) sensitization in juvenile mice. Mice were exposed to CAPs (600 µg/m3 PM2.5) during the gestational period. Twenty-two-day postnatal mice were sensitized with HDM (100 µg, intranasally, 3 times per week). Airway responsiveness (AHR), serum immunoglobulin, and lung inflammation were assessed after 43 days of the postnatal period. Female (n = 47) and male (n = 43) mice were divided into four groups as follows: (1) FA: not exposed to CAPs; (2) CAPs: exposed to CAPs; (3) HDM: sensitized to HDM; and (4) CAPs+HDM: exposed to CAPs and HDM-sensitized. PM2.5 exposure did not worsen lung hyperresponsiveness or allergic inflammation in sensitized animals. The levels of the lung cytokines IL-4, TNF-α, and IL-2 were differentially altered in male and female animals. Males presented hyporesponsiveness and increased lung macrophagic inflammation. There were no epigenetic changes in the IL-4 gene. In conclusion, intrauterine exposure ambient PM2.5 did not worsened allergic pulmonary susceptibility but affected the pulmonary immune profile and lung function, which differed by sex.


Subject(s)
Lung/immunology , Maternal Exposure/adverse effects , Particulate Matter/toxicity , Prenatal Exposure Delayed Effects/immunology , Animals , Cytokines/immunology , Female , Immunoglobulins/blood , Immunoglobulins/immunology , Male , Mice , Mice, Inbred BALB C , Particulate Matter/immunology , Pneumonia/immunology , Pregnancy , Pyroglyphidae/immunology , Respiratory Hypersensitivity/immunology
11.
Genes (Basel) ; 12(7)2021 06 29.
Article in English | MEDLINE | ID: mdl-34209776

ABSTRACT

Abnormal long non-coding RNAs (lncRNAs) expression has been documented to have oncogene or tumor suppressor functions in the development and progression of cancer, emerging as promising independent biomarkers for molecular cancer stratification and patients' prognosis. Examining the relationship between lncRNAs and the survival rates in malignancies creates new scenarios for precision medicine and targeted therapy. Breast cancer (BRCA) is a heterogeneous malignancy. Despite advances in its molecular classification, there are still gaps to explain in its multifaceted presentations and a substantial lack of biomarkers that can better predict patients' prognosis in response to different therapeutic strategies. Here, we performed a re-analysis of gene expression data generated using cDNA microarrays in a previous study of our group, aiming to identify differentially expressed lncRNAs (DELncRNAs) with a potential predictive value for response to treatment with taxanes in breast cancer patients. Results revealed 157 DELncRNAs (90 up- and 67 down-regulated). We validated these new biomarkers as having prognostic and predictive value for breast cancer using in silico analysis in public databases. Data from TCGA showed that compared to normal tissue, MIAT was up-regulated, while KCNQ1OT1, LOC100270804, and FLJ10038 were down-regulated in breast tumor tissues. KCNQ1OT1, LOC100270804, and FLJ10038 median levels were found to be significantly higher in the luminal subtype. The ROC plotter platform results showed that reduced expression of these three DElncRNAs was associated with breast cancer patients who did not respond to taxane treatment. Kaplan-Meier survival analysis revealed that a lower expression of the selected lncRNAs was significantly associated with worse relapse-free survival (RFS) in breast cancer patients. Further validation of the expression of these DELncRNAs might be helpful to better tailor breast cancer prognosis and treatment.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Drug Resistance, Neoplasm , RNA, Long Noncoding/genetics , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Docetaxel/therapeutic use , Female , Humans , RNA, Long Noncoding/metabolism , Survival Analysis , Transcriptome
12.
Front Cell Dev Biol ; 9: 639287, 2021.
Article in English | MEDLINE | ID: mdl-34178979

ABSTRACT

BACKGROUND: Prenatal cocaine exposure (PCE) is associated with behavioral, cognitive, and social consequences in children that might persist into later development. However, there are still few data concerning epigenetic mechanisms associated with the effects of gestational cocaine exposure, particularly in human newborns. AIMS: We investigated the effects of PCE on DNA methylation patterns of the Oxytocin Receptor (OXTR) gene in the umbilical cord blood (UCB). The relationship between UCB DNA methylation levels and the severity of the mother's cocaine use during pregnancy was also evaluated. METHODS: In this cross-sectional study, 28 UCB samples of newborns with a history of crack cocaine exposure in utero and 30 UCB samples of non-exposed newborns (NEC) were compared for DNA methylation levels at two genomic loci located in exon III of the OXTR gene (OXTR1 and OXTR2) through pyrosequencing. Maternal psychopathology was investigated using the Mini International Neuropsychiatric Interview, and substance use characteristics and addiction severity were assessed using the Smoking and Substance Involvement Screening Test (ASSIST). RESULTS: No differences between newborns with a history of PCE and NEC were observed in OXTR1 or OXTR2 DNA methylation levels. However, regression analyses showed that maternal addiction severity for crack cocaine use predicted OXTR1 DNA methylation in newborns. CONCLUSION: These data suggest that OXTR methylation levels in the UCB of children are affected by the severity of maternal crack cocaine usage. Larger studies are likely to detect specific changes in DNA methylation relevant to the consequences of PCE.

13.
Front Pharmacol ; 12: 648769, 2021.
Article in English | MEDLINE | ID: mdl-34122072

ABSTRACT

Idiopathic pulmonary artery hypertension (IPAH), chronic thromboembolic pulmonary hypertension (CTEPH), and acute pulmonary embolism (APTE) are life-threatening cardiopulmonary diseases without specific surgical or medical treatment. Although APTE, CTEPH and IPAH are different pulmonary vascular diseases in terms of clinical presentation, prevalence, pathophysiology and prognosis, the identification of their circulating microRNA (miRNAs) might help in recognizing differences in their outcome evolution and clinical forms. The aim of this study was to describe the APTE, CTEPH, and IPAH-associated miRNAs and to predict their target genes. The target genes of the key differentially expressed miRNAs were analyzed, and functional enrichment analyses were carried out. The miRNAs were detected using RT-PCR. Finally, we incorporated plasma circulating miRNAs in baseline and clinical characteristics of the patients to detect differences between APTE and CTEPH in time of evolution, and differences between CTEPH and IPAH in diseases form. We found five top circulating plasma miRNAs in common with APTE, CTEPH and IPAH assembled in one conglomerate. Among them, miR-let-7i-5p expression was upregulated in APTE and IPAH, while miRNA-320a was upregulated in CTEP and IPAH. The network construction for target genes showed 11 genes regulated by let-7i-5p and 20 genes regulated by miR-320a, all of them regulators of pulmonary arterial adventitial fibroblasts, pulmonary artery endothelial cell, and pulmonary artery smooth muscle cells. AR (androgen receptor), a target gene of hsa-let-7i-5p and has-miR-320a, was enriched in pathways in cancer, whereas PRKCA (Protein Kinase C Alpha), also a target gene of hsa-let-7i-5p and has-miR-320a, was enriched in KEGG pathways, such as pathways in cancer, glioma, and PI3K-Akt signaling pathway. We inferred that CTEPH might be the consequence of abnormal remodeling in APTE, while unbalance between the hyperproliferative and apoptosis-resistant phenotype of pulmonary arterial adventitial fibroblasts, pulmonary artery endothelial cell and pulmonary artery smooth muscle cells in pulmonary artery confer differences in IPAH and CTEPH diseases form. We concluded that the incorporation of plasma circulating let-7i-5p and miRNA-320a in baseline and clinical characteristics of the patients reinforces differences between APTE and CTEPH in outcome evolution, as well as differences between CTEPH and IPAH in diseases form.

14.
J Thorac Dis ; 13(2): 689-707, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33717542

ABSTRACT

BACKGROUND: Pleckstrin homology domain family A (PHLDA) genes play important roles in cancer cellular processes, including inhibiting Akt activation, repressing growth factor signaling, inhibiting the negative feedback of EGFR/ErbB2 signaling cells, and inducing apoptosis. However, the prognostic significance of PHLDA in non-small cell lung cancer (NSCLC) and malignant pleural mesothelioma (MM) remains unclear. The present study investigates the associations between PHLDA expression patterns and their prognostic value in lung adenocarcinoma (LUAD) and MM. METHODS: We analyzed PHLDA family members at the genomic level in silico to explore their mRNA expression pattern and predictive significance in LUAD and MM. We then created a PHLDA-drug interaction network and a protein-protein interaction (PPI) network using different databases. Finally, we immunohistochemically assessed the protein expression of each PHLDA family member on tissue microarrays (TMAs) in both LUAD and MM cohorts with long-term follow-up. RESULTS: While PHLDA1 mRNA expression in both LUAD and MM was lower than that of normal tissue, PHLDA2 mRNA was significantly overexpressed in LUAD, and PHLDA3 mRNA was overexpressed in MM. In NSCLC, both low PHLDA1 mRNA expression and high PHLDA3 mRNA expression correlated with worse overall survival (OS) (P<0.01), whereas high PHLDA2 mRNA expression was associated with better OS (P<0.01). In MM, patients presenting high PHLDA1 and PHLDA2 mRNA expression had poor OS (P=0.01 and P<0.01, respectively). In addition, the PHLDA-drug interaction network indicated that several common drugs could potentially modulate PHLDA expression, and the PPI network suggested that PHLDA1 interacts with Notch family members, whereas PHLDA3 interacts with TP53. Our results also showed that the expression of PHLDA2 and PHLDA3 was significantly higher in LUAD and MM than that of PHLDA1 (P<0.05) and was associated with the risk of death. While patients with PHLDA2 >85.09 cells/mm2 had a low risk of death (P=0.01) and a median survival time of 48 months, those with PHLDA3 <70.38 cells/mm2 had a high risk of death (P=0.03) and a median survival time of 34 months. CONCLUSIONS: We shed light on the role of the PHLDA family as promising predictive biomarkers and potential therapeutic targets in LUAD and MM.

15.
J Forensic Sci ; 66(3): 1048-1055, 2021 May.
Article in English | MEDLINE | ID: mdl-33583031

ABSTRACT

Material characterization is essential to the provenance of graphic arts. Non-destructive analytical techniques are increasingly required in the authentication process of cultural heritage. This work presents a suite of portable, non-destructive, and complementary analytical techniques, energy dispersive x-ray fluorescence (EDXRF), Fourier transform infrared (FTIR) spectroscopies, and brightfield microscopy, applied to the analysis of historical photographs depicting São Paulo city architecture, whose registration date and process of fabrication are unknown. The EDXRF analysis emphasizes the use of typical POP (printing-out paper) photograph with baryta (BaSO4 ) coated paper substrate while the FTIR and microscopy analyses confirm the presence of collodion and a gelatin-based baryta layer. This photographic process was widely employed by professional photographers from 1889 to 1930, when it was gradually abandoned in commercial use. This time interval (1889-1930) is consistent with the information surveyed on the photographic collection. In conclusion, employing complementary techniques (elemental and molecular spectroscopies and image magnification) is essential in identifying the manufacturing materials of cultural heritage material, which is the basis of contemporary authentication procedures. These data provide to curators and historians fundamental information for cataloging, adding subsidies for the correct storage and preservation ("heritage appreciation"). Still, for professional photographers, they present information on the manufacturing processes of historical photographs. The data from the present study also emphasize its perspective of use in graphic arts to aid connoisseurship in identifying forgeries during provenance and authentication studies.

16.
Pharmgenomics Pers Med ; 14: 239-252, 2021.
Article in English | MEDLINE | ID: mdl-33623414

ABSTRACT

PURPOSE: Although non-small cell lung cancer (NSCLC) remains a deadly disease, new predictive biomarkers have emerged to assist in managing the disease, of which one of the most promising is the programmed death-ligand 1 (PD-L1). Each, PD-L1 variant seem to modulate the function of immune checkpoints differently and affect response to adjuvant treatment and outcome in NSCLC patients. We thus investigated the influence of these PD-L1 genetic variations in genetically admixed NSCLC tissue samples, and correlated these values with clinicopathological characteristics, including prognosis. MATERIALS AND METHODS: We evaluated PD-L1 non-coding genetic variants and protein expression in lung adenocarcinomas (ADC), squamous cell carcinomas (SqCC), and large cell carcinomas (LCC) in silico. Microarray paraffin blocks from 70 samples of ADC (N=33), SqCC (N=24), and LCC (N=13) were used to create PD-L1 multiplex immunofluorescence assays with a Cell Signaling E1L3N clone. Fifteen polymorphisms of the PD-L1 gene were investigated by targeted sequencing and evaluated in silico using dedicated tools. RESULTS: Although PD-L1 polymorphisms seemed not to interfere with protein expression, PD-L1 expression varied among different histological subtypes, as did clinical outcomes, with the rs4742098A>G, rs4143815G>C, and rs7041009G>A variants being associated with relapse (P=0.01; P=0.05; P=0.02, respectively). The rs7041009 GG genotype showed a significant correlation with younger and alive patients compared to carriers of the A allele (P=0.02 and P<0.01, respectively). The Cox regression model showed that the rs7041009 GG genotype may influence OS (P<0.01) as a co-dependent factor associated with radiotherapy and recurrence in NSCLC patients. Furthermore, the Kaplan-Meier survival curves showed that rs7041009 and rs4742098 might impact PPS in relapsed patients. In silico approaches identified the variants as benign. CONCLUSION: PD-L1 non-coding variants play an important role in modulating immune checkpoint function and may be explored as immunotherapy biomarkers. We highlight the rs7041009 variant, which impacts OS and PPS in NSCLC patients.

17.
Biomark Med ; 14(16): 1537-1552, 2020 11.
Article in English | MEDLINE | ID: mdl-33179538

ABSTRACT

Aim: The PHLDA (pleckstrin homology like domain, family A) gene family encodes proteins capable of inhibiting AKT (serine/threonine kinase) signaling through phosphoinositol binding competition. Results & methodology: Using in silico analysis, we found that Luminal A and B patients' short relapse-free survival was associated with low PHLDA1 or PHLDA3 and high PHLDA2 expression. In a cohort of 393 patients with luminal breast cancer evaluated by immunohistochemistry on tissue microarrays, we found a direct association of PHLDA3 expression with hormonal therapy response (p = 0.013). Conclusion: Our findings provide new information on the role played by the PHLDA family members as prognostic markers in breast cancer, and more importantly, we provide evidence that they might also predict a response to endocrine therapy.


Subject(s)
Breast Neoplasms/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics , Adult , Biomarkers, Tumor/genetics , Brazil/epidemiology , Breast Neoplasms/metabolism , Cohort Studies , Gene Expression/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Immunohistochemistry/methods , Middle Aged , Prognosis , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/genetics , Transcriptome/genetics
18.
PLoS One ; 15(5): e0232284, 2020.
Article in English | MEDLINE | ID: mdl-32401758

ABSTRACT

BACKGROUND: Long non-coding RNAs (lncRNAs) are characterized as having 200 nucleotides or more and not coding any protein, and several been identified as differentially expressed in several human malignancies, including breast cancer. METHODS: Here, we evaluated lncRNAs differentially expressed in triple-negative breast cancer (TNBC) from a cDNA microarray data set obtained in a previous study from our group. Using in silico analyses in combination with a review of the current literature, we identify three lncRNAs as potential prognostic factors for TNBC patients. RESULTS: We found that the expression of WDFY3-AS2, BDNF-AS, and AFAP1-AS1 was associated with poor survival in patients with TNBCs. WDFY3-AS2 and BDNF-AS are lncRNAs known to play an important role in tumor suppression of different types of cancer, while AFAP1-AS1 exerts oncogenic activity. CONCLUSION: Our findings provided evidence that WDFY3-AS2, BDNF-AS, and AFAP1-AS1 may be potential prognostic factors in TNBC development.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Autophagy-Related Proteins/genetics , Brain-Derived Neurotrophic Factor/genetics , Computer Simulation , RNA, Long Noncoding/genetics , Triple Negative Breast Neoplasms/diagnosis , Triple Negative Breast Neoplasms/genetics , Humans , Oligonucleotide Array Sequence Analysis , Prognosis
19.
Arch Pathol Lab Med ; 144(10): 1234-1244, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32150457

ABSTRACT

CONTEXT.­: Identification of gene mutations that are indicative of epithelial-mesenchymal transition and a noninflammatory immune phenotype may be important for predicting response to immune checkpoint inhibitors. OBJECTIVE.­: To evaluate the utility of multiplex immunofluorescence for immune profiling and to determine the relationships among tumor immune checkpoint and epithelial-mesenchymal transition genomic profiles and the clinical outcomes of patients with nonmetastatic non-small cell lung cancer. DESIGN.­: Tissue microarrays containing 164 primary tumor specimens from patients with stages I to IIIA non-small cell lung carcinoma were examined by multiplex immunofluorescence and image analysis to determine the expression of programmed death ligand-1 (PD-L1) on malignant cells, CD68+ macrophages, and cells expressing the immune markers CD3, CD8, CD57, CD45RO, FOXP3, PD-1, and CD20. Immune phenotype data were tested for correlations with clinicopathologic characteristics, somatic and germline genetic variants, and outcome. RESULTS.­: A high percentage of PD-L1+ malignant cells was associated with clinicopathologic characteristics, and high density of CD3+PD-1+ T cells was associated with metastasis, suggesting that these phenotypes may be clinically useful to identify patients who will likely benefit from immunotherapy. We also found that ZEB2 mutations were a proxy for immunologic ignorance and immune tolerance microenvironments and may predict response to checkpoint inhibitors. A multivariate Cox regression model predicted a lower risk of death for patients with a high density of CD3+CD45RO+ memory T cells, carriers of allele G of CTLA4 variant rs231775, and those whose tumors do not have ZEB2 mutations. CONCLUSIONS.­: Genetic variants in epithelial-mesenchymal transition and immune checkpoint genes are associated with immune cell profiles and may predict patient outcomes and response to immune checkpoint blockade.


Subject(s)
B7-H1 Antigen/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Epithelial-Mesenchymal Transition/physiology , Lung Neoplasms/metabolism , Tumor Microenvironment/immunology , Aged , B7-H1 Antigen/metabolism , Biomarkers, Tumor , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/pathology , Female , Humans , Lung Neoplasms/immunology , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Male , Middle Aged , Mutation , Prognosis , Survival Rate , Tissue Array Analysis
20.
Mediators Inflamm ; 2019: 8346930, 2019.
Article in English | MEDLINE | ID: mdl-31827382

ABSTRACT

Dendritic cells (DCs) are the most efficient antigen-presenting cells and link the innate immune sensing of the environment to the initiation of adaptive immune responses, which may be directed to either acceptance or elimination of the recognized antigen. In cancer patients, though DCs would be expected to present tumor antigens to T lymphocytes and induce tumor-eliminating responses, this is frequently not the case. The complex tumor microenvironment subverts the immune response, blocks some effector mechanisms, and drives others to support tumor growth. Chronic inflammation in a tumor microenvironment is believed to contribute to the induction of such regulatory/tolerogenic response. Among the various mediators of the modulatory switch in chronic inflammation is the "antidanger signal" chaperone, heat shock protein 27 (Hsp27), that has been described, interestingly, to be associated with cell migration and drug resistance of breast cancer cells. Thus, here, we investigated the expression of Hsp27 during the differentiation of monocyte-derived DCs (Mo-DCs) from healthy donors and breast cancer patients and evaluated their surface phenotype, cytokine secretion pattern, and lymphostimulatory activity. Surface phenotype and lymphocyte proliferation were evaluated by flow cytometry, interferon- (IFN-) γ, and interleukin- (IL-) 10 secretion, by ELISA and Hsp27 expression, by quantitative polymerase chain reaction (qPCR). Mo-DCs from cancer patients presented decreased expression of DC maturation markers, decreased ability to induce allogeneic lymphocyte proliferation, and increased IL-10 secretion. In coculture with breast cancer cell lines, healthy donors' Mo-DCs showed phenotype changes similar to those found in patients' cells. Interestingly, patients' monocytes expressed less GM-CSF and IL-4 receptors than healthy donors' monocytes and Hsp27 expression was significantly higher in patients' Mo-DCs (and in tumor samples). Both phenomena could contribute to the phenotypic bias of breast cancer patients' Mo-DCs and might prove potential targets for the development of new immunotherapeutic approaches for breast cancer.


Subject(s)
Breast Neoplasms/metabolism , Dendritic Cells/metabolism , HSP27 Heat-Shock Proteins/metabolism , Monocytes/metabolism , Cell Line, Tumor , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Humans , Interferon-gamma/metabolism , Interleukin-10/metabolism , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL