Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
JID Innov ; 4(2): 100246, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38357212

ABSTRACT

Cutaneous sclerotic chronic graft-versus-host disease (cGVHD) is a common and highly morbid complication of allogeneic hematopoietic stem cell transplantation. Our goals were to identify signals active in the skin of patients with sclerotic cGVHD in an effort to better understand how to treat this manifestation and to explore the heterogeneity of the disease. We identified genes that are significantly upregulated in the skin of patients with sclerotic cGVHD (n = 17) compared with those in the skin of patients who underwent allogeneic hematopoietic stem cell transplantation without cutaneous cGVHD (n = 9) by bulk RNA sequencing. Sclerotic cGVHD was most associated with T helper 1, phagocytic, and fibrotic pathways. In addition, different transcriptomic groups of affected patients were discovered: those with fibrotic and inflammatory/T helper 1 gene expression (the fibroinflammatory group) and those with predominantly fibrotic/TGFß-associated expression (the fibrotic group). Further study will help elucidate whether these gene expression findings can be used to tailor treatment decisions. Multiple proteins encoded by highly induced genes in the skin (SFRP4, SERPINE2, COMP) were also highly induced in the plasma of patients with sclerotic cGVHD (n = 16) compared with those in plasma of control patients who underwent allogeneic hematopoietic stem cell transplantation without sclerotic cGVHD (n = 17), suggesting these TGFß and Wnt pathway mediators as candidate blood biomarkers of the disease.

3.
Sci Immunol ; 8(89): eadi8217, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37922339

ABSTRACT

The IL-2 receptor α chain (IL-2Rα/CD25) is constitutively expressed on double-negative (DN2/DN3 thymocytes and regulatory T cells (Tregs) but induced by IL-2 on T and natural killer (NK) cells, with Il2ra expression regulated by a STAT5-dependent super-enhancer. We investigated CD25 regulation and function using a series of mice with deletions spanning STAT5-binding elements. Deleting the upstream super-enhancer region mainly affected constitutive CD25 expression on DN2/DN3 thymocytes and Tregs, with these mice developing autoimmune alopecia, whereas deleting an intronic region decreased IL-2-induced CD25 on peripheral T and NK cells. Thus, distinct super-enhancer elements preferentially control constitutive versus inducible expression in a cell type-specific manner. The mediator-1 coactivator colocalized with specific STAT5-binding sites. Moreover, both upstream and intronic regions had extensive chromatin interactions, and deletion of either region altered the super-enhancer structure in mature T cells. These results demonstrate differential functions for distinct super-enhancer elements, thereby indicating previously unknown ways to manipulate CD25 expression in a cell type-specific fashion.


Subject(s)
Interleukin-2 , STAT5 Transcription Factor , Animals , Mice , Enhancer Elements, Genetic/genetics , Interleukin-2/genetics , Interleukin-2/pharmacology , Interleukin-2 Receptor alpha Subunit/genetics , Interleukin-2 Receptor alpha Subunit/metabolism , Receptors, Interleukin-2 , STAT5 Transcription Factor/genetics , STAT5 Transcription Factor/metabolism
4.
Front Med (Lausanne) ; 10: 1213889, 2023.
Article in English | MEDLINE | ID: mdl-37901413

ABSTRACT

Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis (SJS/TEN) is a predominantly drug-induced disease, with a mortality rate of 15-20%, that engages the expertise of multiple disciplines: dermatology, allergy, immunology, clinical pharmacology, burn surgery, ophthalmology, urogynecology, and psychiatry. SJS/TEN has an incidence of 1-5/million persons per year in the United States, with even higher rates globally. One of the challenges of SJS/TEN has been developing the research infrastructure and coordination to answer questions capable of transforming clinical care and leading to improved patient outcomes. SJS/TEN 2021, the third research meeting of its kind, was held as a virtual meeting on August 28-29, 2021. The meeting brought together 428 international scientists, in addition to a community of 140 SJS/TEN survivors and family members. The goal of the meeting was to brainstorm strategies to support the continued growth of an international SJS/TEN research network, bridging science and the community. The community workshop section of the meeting focused on eight primary themes: mental health, eye care, SJS/TEN in children, non-drug induced SJS/TEN, long-term health complications, new advances in mechanisms and basic science, managing long-term scarring, considerations for skin of color, and COVID-19 vaccines. The meeting featured several important updates and identified areas of unmet research and clinical need that will be highlighted in this white paper.

5.
Cell Rep Med ; 4(10): 101205, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37757827

ABSTRACT

The complex interplay between microbiota and immunity is important to human health. To explore how altered adaptive immunity influences the microbiome, we characterize skin, nares, and gut microbiota of patients with recombination-activating gene (RAG) deficiency-a rare genetically defined inborn error of immunity (IEI) that results in a broad spectrum of clinical phenotypes. Integrating de novo assembly of metagenomes from RAG-deficient patients with reference genome catalogs provides an expansive multi-kingdom view of microbial diversity. RAG-deficient patient microbiomes exhibit inter-individual variation, including expansion of opportunistic pathogens (e.g., Corynebacterium bovis, Haemophilus influenzae), and a relative loss of body site specificity. We identify 35 and 27 bacterial species derived from skin/nares and gut microbiomes, respectively, which are distinct to RAG-deficient patients compared to healthy individuals. Underscoring IEI patients as potential reservoirs for viral persistence and evolution, we further characterize the colonization of eukaryotic RNA viruses (e.g., Coronavirus 229E, Norovirus GII) in this patient population.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Humans , Microbiota/genetics , Gastrointestinal Microbiome/genetics , Skin , Metagenome
6.
Immunity ; 56(7): 1561-1577.e9, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37402364

ABSTRACT

Hypodermis is the predominant site of Staphylococcus aureus infections that cause cellulitis. Given the importance of macrophages in tissue remodeling, we examined the hypodermal macrophages (HDMs) and their impact on host susceptibility to infection. Bulk and single-cell transcriptomics uncovered HDM subsets with CCR2-dichotomy. HDM homeostasis required the fibroblast-derived growth factor CSF1, ablation of which abrogated HDMs from the hypodermal adventitia. Loss of CCR2- HDMs resulted in accumulation of the extracellular matrix component, hyaluronic acid (HA). HDM-mediated HA clearance required sensing by the HA receptor, LYVE-1. Cell-autonomous IGF1 was required for accessibility of AP-1 transcription factor motifs that controlled LYVE-1 expression. Remarkably, loss of HDMs or IGF1 limited Staphylococcus aureus expansion via HA and conferred protection against cellulitis. Our findings reveal a function for macrophages in the regulation of HA with an impact on infection outcomes, which may be harnessed to limit the establishment of infection in the hypodermal niche.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Humans , Staphylococcus aureus/physiology , Cellulitis/metabolism , Macrophages/metabolism , Extracellular Matrix
7.
Adv Mater ; 35(38): e2301916, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37269476

ABSTRACT

Broad adoption of magnetic soft robotics is hampered by the sophisticated field paradigms for their manipulation and the complexities in controlling multiple devices. Furthermore, high-throughput fabrication of such devices across spatial scales remains challenging. Here, advances in fiber-based actuators and magnetic elastomer composites are leveraged to create 3D magnetic soft robots controlled by unidirectional fields. Thermally drawn elastomeric fibers are instrumented with a magnetic composite synthesized to withstand strains exceeding 600%. A combination of strain and magnetization engineering in these fibers enables programming of 3D robots capable of crawling or walking in magnetic fields orthogonal to the plane of motion. Magnetic robots act as cargo carriers, and multiple robots can be controlled simultaneously and in opposing directions using a single stationary electromagnet. The scalable approach to fabrication and control of magnetic soft robots invites their future applications in constrained environments where complex fields cannot be readily deployed.

8.
Curr Protoc ; 3(3): e709, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36971661

ABSTRACT

Atopic dermatitis (AD) is a multifactorial disease with underlying barrier disruption and altered microbial flora, resulting in dry skin and eczematous inflammation with persistent pruritis. Mouse models have been heavily used to investigate AD pathophysiology. Among various AD mouse models, AD-like inflammation induced by topical calcipotriol, a vitamin D3 analog referred to as MC903 in experimental settings, is a versatile model that can be applied to any strain of mice, which can be used for immunologic and morphologic studies. Herein, we provide basic protocols for the topical application of MC903 and approaches to assess phenotypes. After inducing AD-like inflammation, the skin is harvested for flow cytometry analysis, as well as for histologic and immunofluorescence microscopy analyses. The combination of these approaches enables accurate characterization of the degree of inflammation, type of inflammatory infiltrate, and localization of immune infiltrates. Published 2023. This article is a U.S. Government work and is in the public domain in the USA. Basic Protocol 1: Application of MC903 and gross phenotype assessment Basic Protocol 2: Processing skin for flow cytometry analysis Support Protocol: Skin immune cell surface staining and flow cytometry analysis Basic Protocol 3: Harvesting skin for histologic analysis Basic Protocol 4: Immunofluorescence staining to identify immune cell infiltrates.


Subject(s)
Dermatitis, Atopic , Mice , Animals , Dermatitis, Atopic/genetics , Dermatitis, Atopic/pathology , Skin/metabolism , Skin/pathology , Cholecalciferol/adverse effects , Cholecalciferol/metabolism , Inflammation/metabolism , Inflammation/pathology , Phenotype
10.
Science ; 379(6634): eabo0431, 2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36264828

ABSTRACT

The near-Earth carbonaceous asteroid (162173) Ryugu is expected to contain volatile chemical species that could provide information on the origin of Earth's volatiles. Samples of Ryugu were retrieved by the Hayabusa2 spacecraft. We measured noble gas and nitrogen isotopes in Ryugu samples and found that they are dominated by presolar and primordial components, incorporated during Solar System formation. Noble gas concentrations are higher than those in Ivuna-type carbonaceous (CI) chondrite meteorites. Several host phases of isotopically distinct nitrogen have different abundances among the samples. Our measurements support a close relationship between Ryugu and CI chondrites. Noble gases produced by galactic cosmic rays, indicating a ~5 million year exposure, and from implanted solar wind record the recent irradiation history of Ryugu after it migrated to its current orbit.

11.
Sci Adv ; 8(46): eabo7239, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36264781

ABSTRACT

The Hayabusa2 spacecraft returned to Earth from the asteroid 162173 Ryugu on 6 December 2020. One day after the recovery, the gas species retained in the sample container were extracted and measured on-site and stored in gas collection bottles. The container gas consists of helium and neon with an extraterrestrial 3He/4He and 20Ne/22Ne ratios, along with some contaminant terrestrial atmospheric gases. A mixture of solar and Earth's atmospheric gas is the best explanation for the container gas composition. Fragmentation of Ryugu grains within the sample container is discussed on the basis of the estimated amount of indigenous He and the size distribution of the recovered Ryugu grains. This is the first successful return of gas species from a near-Earth asteroid.

12.
Skin Health Dis ; 2(2): e108, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35677919

ABSTRACT

Epstein-Barr virus-positive mucocutaneous ulcer (EBVMCU) is a B-cell proliferative disorder that has been designated as a provisional entity in the 2017 World Health Organization classification for lymphoid neoplasms. While EBVMCU may contain varying numbers of cells with Hodgkin and Reed-Sternberg cells-like morphology, the clinical course is benign and must be distinguished from lymphomas. Patients who develop EBVMCU are commonly immunocompromised, with methotrexate (MTX) as the leading cause. Most previously reported cases of EBVMCU describe mucosal ulcers with very little documentation on skin lesions and its course. Here, we report a case of MTX-associated EBVMCU of the lower leg that underwent spontaneous regression after MTX withdrawal, during which negative conversion of local Epstein-Barr virus activation was confirmed.

13.
Keio J Med ; 71(2): 53, 2022.
Article in English | MEDLINE | ID: mdl-35753764

ABSTRACT

The skin is not merely a physical barrier but also an active immunological interface, exposed to various external stimuli including microbes. Over the recent years, our laboratory has defined hair follicles as control towers that regulates immune cells residing in the skin. Hair follicles produce chemokines and cytokines that are crucial for the localization and tissue-residency of immune cells including the Langerhans cells, resident memory T cells, and innate lymphoid cells. We also discovered that disruption of the ADAM17-EGF receptor axis and ADAM10-Notch signaling axis leads to dysbiosis on the skin surface and in the hair follicles, respectively. The former leads to microbiome predominance of Staphylococcus aureus and results in atopic skin inflammation, whereas the latter leads to Corynebacterium species predominance that trigger irreversible hair follicle destruction. These findings highlight the distinct mechanisms that regulate the microbiome in different compartments of the skin. In this talk, I will focus on the deeper layers of the skin-the hypodermis (a.k.a subcutaneous tissue), a common site for cellulitis, which we found to be enriched with macrophages. We enabled layer-specific depletion of macrophages, which had prominent effects on the organization of the extracellular matrix, counterintuitively rendering mice highly protected against S. aureus-mediated cellulitis. I will also introduce our ongoing efforts to understand the histology and pathophysiology of Degos disease, an extremely rare and highly fatal disease of unknown etiology.


Subject(s)
Dermatitis, Atopic , Staphylococcus aureus , Animals , Cellulitis/pathology , Dermatitis, Atopic/pathology , Humans , Immunity, Innate , Lymphocytes , Mice , Skin/pathology
15.
J Biochem ; 171(5): 543-554, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35106570

ABSTRACT

Protein glycosylation plays a pivotal role in tumour development by modulating molecular interactions and cellular signals. Sialyl-Tn (sTn) antigen is a tumour-associating carbohydrate epitope whose expression correlates with metastasis and poor prognosis of various cancers; however, its pathophysiological function is poorly understood. Extracellular vesicles (EVs) derived from cancer cells act as a signal mediator amongst tumour microenvironments by transferring cargo molecules. sTn antigen has been found in the glycans of EVs, thereby the functional relevance of sTn antigen to the regulation of tumour microenvironments could be expected. In the present study, we showed that sTn antigen induced TP53 and tumour suppressor-activated pathway 6 (TSAP6) and consequently enhanced EV production. Besides, the genetic attenuation of TSAP6 resulted in the reduction of the EV production in the sTn antigen expressing cells. The enhanced EV production in the sTn antigen-expressing cells consequently augmented the delivery of EVs to recipient cells. The produced EVs selectively and abundantly encased focal adhesion kinase and transferred it to EV-recipient cells, and thus, their cellular motility was enhanced. These findings would contribute to facilitate the elucidation of the pathophysiological significance of the sTn antigen in the tumour microenvironments and tumour development.


Subject(s)
Antigens, Tumor-Associated, Carbohydrate , Extracellular Vesicles , Antigens, Tumor-Associated, Carbohydrate/metabolism , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Extracellular Vesicles/metabolism
16.
STAR Protoc ; 3(1): 101052, 2022 03 18.
Article in English | MEDLINE | ID: mdl-34977690

ABSTRACT

Skin is our body's outermost physical barrier and an immunological interface enriched with various immune and non-immune cells. However, efficient generation of single-cell suspensions for flow cytometry analysis can be challenging. Here, we provide protocols to obtain epidermal and whole skin cell suspensions as well as gating strategies to identify mouse keratinocytes and skin immune cell subsets via flow cytometry. For complete details on the use and execution of this protocol, please refer to Sakamoto et al. (2021).


Subject(s)
Keratinocytes , Skin , Animals , Flow Cytometry/methods , Mice , Suspensions
17.
Immunity ; 54(10): 2321-2337.e10, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34582748

ABSTRACT

Hair follicles (HFs) function as hubs for stem cells, immune cells, and commensal microbes, which must be tightly regulated during homeostasis and transient inflammation. Here we found that transmembrane endopeptidase ADAM10 expression in upper HFs was crucial for regulating the skin microbiota and protecting HFs and their stem cell niche from inflammatory destruction. Ablation of the ADAM10-Notch signaling axis impaired the innate epithelial barrier and enabled Corynebacterium species to predominate the microbiome. Dysbiosis triggered group 2 innate lymphoid cell-mediated inflammation in an interleukin-7 (IL-7) receptor-, S1P receptor 1-, and CCR6-dependent manner, leading to pyroptotic cell death of HFs and irreversible alopecia. Double-stranded RNA-induced ablation models indicated that the ADAM10-Notch signaling axis bolsters epithelial innate immunity by promoting ß-defensin-6 expression downstream of type I interferon responses. Thus, ADAM10-Notch signaling axis-mediated regulation of host-microbial symbiosis crucially protects HFs from inflammatory destruction, which has implications for strategies to sustain tissue integrity during chronic inflammation.


Subject(s)
ADAM10 Protein/immunology , Amyloid Precursor Protein Secretases/immunology , Dysbiosis/immunology , Hair Follicle/pathology , Lymphocytes/immunology , Membrane Proteins/immunology , Receptors, Notch/immunology , Skin/microbiology , Alopecia/immunology , Alopecia/pathology , Animals , Corynebacterium , Dysbiosis/pathology , Female , Hair Follicle/immunology , Immunity, Innate , Inflammation/immunology , Inflammation/metabolism , Inflammation/pathology , Mice , Signal Transduction/immunology , Skin/immunology , Skin/pathology
18.
Sci Transl Med ; 13(600)2021 06 30.
Article in English | MEDLINE | ID: mdl-34193610

ABSTRACT

Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are life-threatening mucocutaneous adverse drug reactions characterized by massive epidermal detachment. Cytotoxic T cells and associated effector molecules are known to drive SJS/TEN pathophysiology, but the contribution of innate immune responses is not well understood. We describe a mechanism by which neutrophils triggered inflammation during early phases of SJS/TEN. Skin-infiltrating CD8+ T cells produced lipocalin-2 in a drug-specific manner, which triggered the formation of neutrophil extracellular traps (NETs) in early lesional skin. Neutrophils undergoing NETosis released LL-37, an antimicrobial peptide, which induced formyl peptide receptor 1 (FPR1) expression by keratinocytes. FPR1 expression caused keratinocytes to be vulnerable to necroptosis that caused further release of LL-37 by necroptotic keratinocytes and induced FPR1 expression on surrounding keratinocytes, which likely amplified the necroptotic response. The NETs-necroptosis axis was not observed in less severe cutaneous adverse drug reactions, autoimmune diseases, or neutrophil-associated disorders, suggesting that this was a process specific to SJS/TEN. Initiation and progression of SJS/TEN keratinocyte necroptosis appear to involve a cascade of events mediated by innate and adaptive immune responses, and understanding these responses may contribute to the identification of diagnostic markers or therapeutic targets for these adverse drug reactions.


Subject(s)
Stevens-Johnson Syndrome , CD8-Positive T-Lymphocytes , Humans , Keratinocytes , Neutrophils , T-Lymphocytes, Cytotoxic
19.
Nat Immunol ; 21(9): 966-967, 2020 09.
Article in English | MEDLINE | ID: mdl-32719522

Subject(s)
Microbiota , Skin , Bacteria , Chemokines
20.
Nat Med ; 26(2): 236-243, 2020 02.
Article in English | MEDLINE | ID: mdl-31959990

ABSTRACT

Drug-induced hypersensitivity syndrome/drug reaction with eosinophilia and systemic symptoms (DiHS/DRESS) is a potentially fatal multiorgan inflammatory disease associated with herpesvirus reactivation and subsequent onset of autoimmune diseases1-4. Pathophysiology remains elusive and therapeutic options are limited. Cases refractory to corticosteroid therapy pose a clinical challenge1,5 and approximately 30% of patients with DiHS/DRESS develop complications, including infections and inflammatory and autoimmune diseases1,2,5. Progress in single-cell RNA sequencing (scRNA-seq) provides an opportunity to dissect human disease pathophysiology at unprecedented resolutions6, particularly in diseases lacking animal models, such as DiHS/DRESS. We performed scRNA-seq on skin and blood from a patient with refractory DiHS/DRESS, identifying the JAK-STAT signaling pathway as a potential target. We further showed that central memory CD4+ T cells were enriched with DNA from human herpesvirus 6b. Intervention via tofacitinib enabled disease control and tapering of other immunosuppressive agents. Tofacitinib, as well as antiviral agents, suppressed culprit-induced T cell proliferation in vitro, further supporting the roles of the JAK-STAT pathway and herpesviruses in mediating the adverse drug reaction. Thus, scRNA-seq analyses guided successful therapeutic intervention in the patient with refractory DiHS/DRESS. scRNA-seq may improve our understanding of complicated human disease pathophysiology and provide an alternative approach in personalized medicine.


Subject(s)
Drug Hypersensitivity Syndrome/therapy , Single-Cell Analysis , Transcriptome , Adrenal Cortex Hormones/therapeutic use , Adult , Antiviral Agents/therapeutic use , Autoimmune Diseases/complications , CD4-Positive T-Lymphocytes/cytology , Cell Proliferation , Cell Separation , Flow Cytometry , Herpesvirus 6, Human/immunology , Humans , Immunosuppressive Agents/therapeutic use , Leukocytes, Mononuclear/cytology , Lymphocytes/cytology , Male , Piperidines/therapeutic use , Pyrimidines/therapeutic use , Pyrroles/therapeutic use , RNA-Seq , Signal Transduction , T-Lymphocytes, Regulatory/cytology , VDJ Recombinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...