Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
2.
Nat Commun ; 14(1): 5534, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37749092

ABSTRACT

Mesenchymal activation, characterized by dense stromal infiltration of immune and mesenchymal cells, fuels the aggressiveness of colorectal cancers (CRC), driving progression and metastasis. Targetable molecules in the tumor microenvironment (TME) need to be identified to improve the outcome in CRC patients with this aggressive phenotype. This study reports a positive link between high thrombospondin-1 (THBS1) expression and mesenchymal characteristics, immunosuppression, and unfavorable CRC prognosis. Bone marrow-derived monocyte-like cells recruited by CXCL12 are the primary source of THBS1, which contributes to the development of metastasis by inducing cytotoxic T-cell exhaustion and impairing vascularization. Furthermore, in orthotopically generated CRC models in male mice, THBS1 loss in the TME renders tumors partially sensitive to immune checkpoint inhibitors and anti-cancer drugs. Our study establishes THBS1 as a potential biomarker for identifying mesenchymal CRC and as a critical suppressor of antitumor immunity that contributes to the progression of this malignancy with a poor prognosis.


Subject(s)
Colorectal Neoplasms , Monocytes , Humans , Male , Animals , Mice , Immunosuppression Therapy , Aggression , Immune Checkpoint Inhibitors , Tumor Microenvironment
3.
J Clin Invest ; 133(18)2023 09 15.
Article in English | MEDLINE | ID: mdl-37712427

ABSTRACT

RECK is downregulated in various human cancers; however, how RECK inactivation affects carcinogenesis remains unclear. We addressed this issue in a pancreatic ductal adenocarcinoma (PDAC) mouse model and found that pancreatic Reck deletion dramatically augmented the spontaneous development of PDAC with a mesenchymal phenotype, which was accompanied by increased liver metastases and decreased survival. Lineage tracing revealed that pancreatic Reck deletion induced epithelial-mesenchymal transition (EMT) in PDAC cells, giving rise to inflammatory cancer-associated fibroblast-like cells in mice. Splenic transplantation of Reck-null PDAC cells resulted in numerous liver metastases with a mesenchymal phenotype, whereas reexpression of RECK markedly reduced metastases and changed the PDAC tumor phenotype into an epithelial one. Consistently, low RECK expression correlated with low E-cadherin expression, poor differentiation, metastasis, and poor prognosis in human PDAC. RECK reexpression in the PDAC cells was found to downregulate MMP2 and MMP3, with a concomitant increase in E-cadherin and decrease in EMT-promoting transcription factors. An MMP inhibitor recapitulated the effects of RECK on the expression of E-cadherin and EMT-promoting transcription factors and invasive activity. These results establish the authenticity of RECK as a pancreatic tumor suppressor, provide insights into its underlying mechanisms, and support the idea that RECK could be an important therapeutic effector against human PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Liver Neoplasms , Pancreatic Neoplasms , Animals , Humans , Mice , Cadherins/genetics , Carcinoma, Pancreatic Ductal/genetics , Epithelial-Mesenchymal Transition/genetics , GPI-Linked Proteins/genetics , Liver Neoplasms/genetics , Pancreas , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms
4.
Clin J Gastroenterol ; 16(6): 877-883, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37610608

ABSTRACT

A 70-year-old woman was referred to our hospital because of slight elevation of soluble interleukin-2 receptor (sIL-2R) and accumulation of 18F-fluorodeoxyglucose (FDG) in S8 of the liver on positron emission tomography. The mass was strongly suspected to be malignant because of contrast enhancement and enlargement in size of the mass, and suspicion of portal vein invasion. Hepatic S8 subsegmentectomy was performed for diagnostic and therapeutic purposes. Hematoxylin and eosin staining of the resected specimen showed small lymphocytes with no atypia and no formation of lymphoid follicles. Immunostaining showed CD3-positive cells in the interfollicular region and CD20-positive cells in the lymphoid follicles. Both CD10 and BCL-2 were negative in the follicular germinal center. CD138-positive plasma cells were observed and there was no light chain restriction. Based on polyclonal growth pattern of lymphocytes in the lymphoid follicles and interfollicular region, she was diagnosed with hepatic reactive lymphoid hyperplasia (RLH).Review of the English literature of hepatic RLH which referred to imaging findings yielded 23 cases, including this case. As a result, we suggest that liver biopsy should be performed for definitive diagnosis, when hepatic RLH is suspected by imaging findings and backgrounds.


Subject(s)
Pseudolymphoma , Female , Humans , Aged , Pseudolymphoma/diagnosis , Pseudolymphoma/surgery , Pseudolymphoma/pathology , Liver/diagnostic imaging , Liver/pathology , Lymphocytes/pathology , Hyperplasia/pathology , Diagnosis, Differential
5.
J Pathol ; 260(4): 478-492, 2023 08.
Article in English | MEDLINE | ID: mdl-37310065

ABSTRACT

Biliary tract cancer (BTC) has poor prognosis. The Notch receptor is aberrantly expressed in extrahepatic cholangiocarcinoma (eCCA). However, the role of Notch signaling in the initiation and progression of eCCA and gallbladder (GB) cancer remains unknown. Therefore, we investigated the functional role of Notch signaling during tumorigenesis of the extrahepatic bile duct (EHBD) and GB. Activation of Notch signaling and oncogenic Kras resulted in the development of biliary intraepithelial neoplasia (BilINs) in the EHBD and GB, which were premalignant lesions that progressed to adenocarcinoma in mice. The expression of genes involved in the mTORC1 pathway was increased in biliary spheroids from Hnf1b-CreERT2; KrasLSL-G12D ; Rosa26LSL-NotchIC mice and inhibition of the mTORC1 pathway suppressed spheroid growth. Additionally, simultaneous activation of the PI3K-AKT and Notch pathways in EHBD and GB induced biliary cancer development in mice. Consistent with this, we observed a significant correlation between activated NOTCH1 and phosphorylated Ribosomal Protein S6 (p-S6) expression in human eCCA. Furthermore, inhibition of the mTORC1 pathway suppressed the growth of Notch-activated human biliary cancer cells in vitro and in vivo. Mechanistically, the Kras/Notch-Myc axis activated mTORC1 through TSC2 phosphorylation in mutant biliary spheroids. These data indicate that inhibition of the mTORC1 pathway could be an effective treatment strategy for Notch-activated human eCCA. © 2023 The Pathological Society of Great Britain and Ireland.


Subject(s)
Bile Duct Neoplasms , Biliary Tract Neoplasms , Carcinoma in Situ , Cholangiocarcinoma , Humans , Mice , Animals , Proto-Oncogene Proteins c-akt , Mechanistic Target of Rapamycin Complex 1 , Phosphatidylinositol 3-Kinases , Cholangiocarcinoma/pathology , Carcinoma in Situ/pathology , Bile Duct Neoplasms/pathology , Bile Ducts, Intrahepatic/pathology
6.
Clin J Gastroenterol ; 16(5): 698-701, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37166565

ABSTRACT

A man in his 60s was admitted because of abdominal pain and fatigue. Contrast enhanced computed tomography (CECT) showed a hypovascular tumor, 7 cm in size, in the left lobe of liver. He had no history of alcohol consumption. HBs antigen and HCV antibody were negative. For definitive diagnosis, biopsy of the hepatic tumor was performed. After the biopsy, the patient suddenly got high fever, and blood tests showed WBC 22,000/L, Hb 8.9 g/dL, Plts 11.6 × 104/L, AST 140 IU/L, ALT 93 IU/L, LDH 635 U/L. He died on the following day despite of supportive therapy. Autopsy revealed that the hepatic tumor was poorly differentiated hepatocellular carcinoma (HCC) and that hemophagocytic macrophages were found in the bone marrow and spleen. Based on the pathological findings of autopsy, he was finally diagnosed with hemophagocytic lymphohistiocytosis (HLH) associated with HCC. HLH is a rare and life-threaded disorder of immune overactivation. Malignancy-associated HLH is well-known; however, it is usually associated with malignant lymphoma. To our knowledge, this is the first reported case of HLH associated with HCC, which was diagnosed by autopsy. Although extremely rare, our case highlights that HLH should be considered as a differential diagnosis of unknown high fever and bicytopenia in patients with solid tumors, including HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Lymphohistiocytosis, Hemophagocytic , Male , Humans , Lymphohistiocytosis, Hemophagocytic/complications , Lymphohistiocytosis, Hemophagocytic/diagnosis , Carcinoma, Hepatocellular/complications , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/complications , Liver Neoplasms/pathology , Bone Marrow/pathology
7.
Oncogene ; 42(26): 2139-2152, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37198398

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease. We previously reported that chromatin remodeler Brg1 is essential for acinar cell-derived PDAC formation in mice. However, the functional role of Brg1 in established PDAC and its metastasis remains unknown. Here, we investigated the importance of Brg1 for established PDAC by using a mouse model with a dual recombinase system. We discovered that Brg1 was a critical player for the cell survival and growth of spontaneously developed PDAC in mice. In addition, Brg1 was essential for metastasis of PDAC cells by inhibiting apoptosis in splenic injection and peritoneal dissemination models. Moreover, cancer stem-like property was compromised in PDAC cells by Brg1 ablation. Mechanistically, the hypoxia pathway was downregulated in Brg1-deleted mouse PDAC and BRG1-low human PDAC. Brg1 was essential for HIF-1α to bind to its target genes to augment the hypoxia pathway, which was important for PDAC cells to maintain their stem-like properties and to metastasize to the liver. Human PDAC cells with high BRG1 expression were more susceptible to BRG1 suppression. In conclusion, Brg1 plays a critical role for cell survival, stem-like property and metastasis of PDAC through the regulation of hypoxia pathway, and thus could be a novel therapeutic target for PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cell Proliferation , Hypoxia , Pancreatic Neoplasms/pathology , Animals , Mice , Pancreatic Neoplasms
10.
Oncotarget ; 14: 276-279, 2023 03 31.
Article in English | MEDLINE | ID: mdl-36999984

ABSTRACT

KRAS and TP53 mutations are frequently observed in extrahepatic biliary cancer. Mutations of KRAS and TP53 are independent risk factors for poor prognosis in biliary cancer. However, the exact role of p53 in the development of extrahepatic biliary cancer remains elusive. In this study, we found that simultaneous activation of Kras and inactivation of p53 induces biliary neoplasms that resemble human biliary intraepithelial neoplasia in the extrahepatic bile duct and intracholecystic papillary-tubular neoplasm in the gall bladder in mice. However, inactivation of p53 was not sufficient for the progression of biliary precancerous lesions into invasive cancer in the context of oncogenic Kras within the observation period. This was also the case in the context of additional activation of the Wnt signaling pathway. Thus, p53 protects against formation of extrahepatic biliary precancerous lesions in the context of oncogenic Kras.


Subject(s)
Bile Duct Neoplasms , Bile Ducts, Extrahepatic , Biliary Tract Neoplasms , Cholangiocarcinoma , Precancerous Conditions , Animals , Mice , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/prevention & control , Bile Duct Neoplasms/pathology , Bile Ducts, Extrahepatic/pathology , Bile Ducts, Intrahepatic/pathology , Biliary Tract Neoplasms/pathology , Cholangiocarcinoma/pathology , Precancerous Conditions/genetics , Precancerous Conditions/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism
12.
Cancer Sci ; 113(10): 3417-3427, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35924439

ABSTRACT

Tumor stem cells (TSCs), capable of self-renewal and continuous production of progeny cells, could be potential therapeutic targets. We have recently reported that chromatin remodeling regulator Brg1 is required for maintenance of murine intestinal TSCs and stemness feature of human colorectal cancer (CRC) cells by inhibiting apoptosis. However, it is still unclear how BRG1 suppression changes the underlying intracellular mechanisms of human CRC cells. We found that Brg1 suppression resulted in upregulation of the JNK signaling pathway in human CRC cells and murine intestinal TSCs. Simultaneous suppression of BRG1 and the JNK pathway, either by pharmacological inhibition or silencing of c-JUN, resulted in even stronger inhibition of the expansion of human CRC cells compared to Brg1 suppression alone. Consistently, high c-JUN expression correlated with worse prognosis for survival in human CRC patients with low BRG1 expression. Therefore, the JNK pathway plays a critical role for expansion and stemness of human CRC cells in the context of BRG1 suppression, and thus a combined blockade of BRG1 and the JNK pathway could be a novel therapeutic approach against human CRC.


Subject(s)
Colorectal Neoplasms , MAP Kinase Signaling System , Animals , Apoptosis , Cell Line, Tumor , Chromatin , Colorectal Neoplasms/pathology , DNA Helicases , Gene Expression Regulation, Neoplastic , Humans , JNK Mitogen-Activated Protein Kinases , Mice , Neoplastic Stem Cells/metabolism , Nuclear Proteins , Transcription Factors
13.
Gastroenterology ; 163(2): 466-480.e6, 2022 08.
Article in English | MEDLINE | ID: mdl-35483445

ABSTRACT

BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDAC) arises from several types of premalignant lesions, including intraductal tubulopapillary neoplasm (ITPN); however, the molecular pathogenesis of ITPN remains unknown. METHODS: We performed studies with Hnf1b-CreERT2; Ptenf/f; Arid1af/f mice to investigate the consequence of genetic deletion of Arid1a in adult pancreatic ductal cells in the context of oncogenic PI3K/Akt pathway activation. RESULTS: Simultaneous deletion of Arid1a and Pten in pancreatic ductal cells resulted in the development of ITPN, which progressed to PDAC, in mice. Simultaneous loss of Arid1a and Pten induced dedifferentiation of pancreatic ductal cells and Yes-associated protein 1/Transcriptional coactivator with PDZ-binding motif (YAP/TAZ) pathway activation. Consistent with the mouse data, TAZ expression was found elevated in human ITPNs and ITPN-derived PDACs but not in human intraductal papillary mucinous neoplasms, indicating that activation of the TAZ pathway is a distinctive feature of ITPN. Furthermore, pharmacological inhibition of the YAP/TAZ pathway suppressed the dedifferentiation of pancreatic ductal cells and development of ITPN in Arid1a and Pten double-knockout mice. CONCLUSION: Concurrent loss of Arid1a and Pten in adult pancreatic ductal cells induced ITPN and ITPN-derived PDAC in mice through aberrant activation of the YAP/TAZ pathway, and inhibition of the YAP/TAZ pathway prevented the development of ITPN. These findings provide novel insights into the pathogenesis of ITPN-derived PDAC and highlight the YAP/TAZ pathway as a potential therapeutic target.


Subject(s)
Carcinoma, Pancreatic Ductal , DNA-Binding Proteins , PTEN Phosphohydrolase , Pancreatic Neoplasms , Transcription Factors , Animals , Carcinoma, Pancreatic Ductal/pathology , DNA-Binding Proteins/genetics , Humans , Mice , PTEN Phosphohydrolase/genetics , Pancreatic Ducts/pathology , Pancreatic Neoplasms/pathology , Phosphatidylinositol 3-Kinases , Transcription Factors/genetics , Pancreatic Neoplasms
14.
Cancer Res ; 82(9): 1803-1817, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35247892

ABSTRACT

Biliary cancer has long been known to carry a poor prognosis, yet the molecular pathogenesis of carcinoma of the extrahepatic biliary system and its precursor lesions remains elusive. Here we investigated the role of Kras and canonical Wnt pathways in the tumorigenesis of the extrahepatic bile duct (EHBD) and gall bladder (GB). In mice, concurrent activation of Kras and Wnt pathways induced biliary neoplasms that resembled human intracholecystic papillary-tubular neoplasm (ICPN) and biliary intraepithelial neoplasia (BilIN), putative precursors to invasive biliary cancer. At a low frequency, these lesions progressed to adenocarcinoma in a xenograft model, establishing them as precancerous lesions. Global gene expression analysis revealed increased expression of genes associated with c-Myc and TGFß pathways in mutant biliary spheroids. Silencing or pharmacologic inhibition of c-Myc suppressed proliferation of mutant biliary spheroids, whereas silencing of Smad4/Tgfbr2 or pharmacologic inhibition of TGFß signaling increased proliferation of mutant biliary spheroids and cancer formation in vivo. Human ICPNs displayed activated Kras and Wnt signals and c-Myc and TGFß pathways. Thus, these data provide direct evidence that concurrent activation of the Kras and canonical Wnt pathways results in formation of ICPN and BilIN, which could develop into biliary cancer. SIGNIFICANCE: This work shows how dysregulation of canonical cell growth pathways drives precursors to biliary cancers and identifies several molecular vulnerabilities as potential therapeutic targets in these precursors to prevent oncogenic progression.


Subject(s)
Bile Duct Neoplasms , Biliary Tract Neoplasms , Carcinoma in Situ , Precancerous Conditions , Animals , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/pathology , Bile Pigments/metabolism , Biliary Tract Neoplasms/genetics , Carcinoma in Situ/pathology , Humans , Mice , Precancerous Conditions/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Transforming Growth Factor beta/metabolism , Wnt Signaling Pathway/genetics
15.
J Pathol ; 255(3): 257-269, 2021 11.
Article in English | MEDLINE | ID: mdl-34415580

ABSTRACT

Tumor cells capable of self-renewal and continuous production of progeny cells are called tumor stem cells (TSCs) and are considered to be potential therapeutic targets. However, the mechanisms underlying the survival and function of TSCs are not fully understood. We previously reported that chromatin remodeling regulator Brg1 is essential for intestinal stem cells in mice and Dclk1 is an intestinal TSC marker. In this study, we investigated the role of Brg1 in Dclk1+ intestinal tumor cells for the maintenance of intestinal tumors in mice. Specific ablation of Brg1 in Dclk1+ intestinal tumor cells reduced intestinal tumors in ApcMin mice, and continuous ablation of Brg1 maintained the reduction of intestinal tumors. Lineage tracing in the context of Brg1 ablation in Dclk1+ intestinal tumor cells revealed that Brg1-null Dclk1+ intestinal tumor cells did not give rise to their descendent tumor cells, indicating that Brg1 is essential for the self-renewal of Dclk1+ intestinal tumor cells. Five days after Brg1 ablation, we observed increased apoptosis in Dclk1+ tumor cells. Furthermore, Brg1 was crucial for the stemness of intestinal tumor cells in a spheroid culture system. BRG1 knockdown also impaired cell proliferation and increased apoptosis in human colorectal cancer (CRC) cells. Microarray analysis revealed that apoptosis-related genes were upregulated and stem cell-related genes were downregulated in human CRC cells by BRG1 suppression. Consistently, high BRG1 expression correlated with poor disease-specific survival in human CRC patients. These data indicate that Brg1 plays a crucial role in intestinal TSCs in mice by inhibiting apoptosis and is critical for cell survival and stem cell features in human CRC cells. Thus, BRG1 represents a new therapeutic target for human CRC. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Colorectal Neoplasms/pathology , DNA Helicases/metabolism , Neoplastic Stem Cells/pathology , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Animals , Mice
16.
Gastroenterology ; 159(2): 682-696.e13, 2020 08.
Article in English | MEDLINE | ID: mdl-32360551

ABSTRACT

BACKGROUND & AIMS: SETDB1, a histone methyltransferase that trimethylates histone H3 on lysine 9, promotes development of several tumor types. We investigated whether SETDB1 contributes to development of pancreatic ductal adenocarcinoma (PDAC). METHODS: We performed studies with Ptf1aCre; KrasG12D; Setdb1f/f, Ptf1aCre; KrasG12D; Trp53f/+; Setdb1f/f, and Ptf1aCre; KrasG12D; Trp53f/f; Setdb1f/f mice to investigate the effects of disruption of Setdb1 in mice with activated KRAS-induced pancreatic tumorigenesis, with heterozygous or homozygous disruption of Trp53. We performed microarray analyses of whole-pancreas tissues from Ptf1aCre; KrasG12D; Setdb1f/f, and Ptf1aCre; KrasG12D mice and compared their gene expression patterns. Chromatin immunoprecipitation assays were performed using acinar cells isolated from pancreata with and without disruption of Setdb1. We used human PDAC cells for SETDB1 knockdown and inhibitor experiments. RESULTS: Loss of SETDB1 from pancreas accelerated formation of premalignant lesions in mice with pancreata that express activated KRAS. Microarray analysis revealed up-regulated expression of genes in the apoptotic pathway and genes regulated by p53 in SETDB1-deficient pancreata. Deletion of Setdb1 from pancreas prevented formation of PDACs, concomitant with increased apoptosis and up-regulated expression of Trp53 in mice heterozygous for disruption of Trp53. In contrast, pancreata of mice with homozygous disruption of Trp53 had no increased apoptosis, and PDACs developed. Chromatin immunoprecipitation revealed that SETDB1 bound to the Trp53 promoter to regulate its expression. Expression of an inactivated form of SETDB1 in human PDAC cells with wild-type TP53 resulted in TP53-induced apoptosis. CONCLUSIONS: We found that the histone methyltransferase SETDB1 is required for development of PDACs, induced by activated KRAS, in mice. SETDB1 inhibits apoptosis by regulating expression of p53. SETDB1 might be a therapeutic target for PDACs that retain p53 function.


Subject(s)
Apoptosis , Carcinoma, Pancreatic Ductal/enzymology , Cell Transformation, Neoplastic/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Pancreatic Neoplasms/enzymology , Tumor Suppressor Protein p53/metabolism , Animals , Binding Sites , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Disease Models, Animal , Gene Expression Regulation, Neoplastic , Histone-Lysine N-Methyltransferase/deficiency , Histone-Lysine N-Methyltransferase/genetics , Humans , Mice, Knockout , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Promoter Regions, Genetic , Proto-Oncogene Proteins p21(ras)/genetics , Signal Transduction , Transcription Factors/genetics , Tumor Suppressor Protein p53/deficiency , Tumor Suppressor Protein p53/genetics
17.
Sci Rep ; 9(1): 15244, 2019 10 23.
Article in English | MEDLINE | ID: mdl-31645712

ABSTRACT

Colonic epithelial cells comprise the mucosal barrier, and their dysfunction promotes microbial invasion from the gut lumen and induces the development of intestinal inflammation. The EP4 receptor is known to mediate the protective effect of prostaglandin (PG) E2 in the gastrointestinal tract; however, the exact role of epithelial EP4 in intestinal pathophysiology remains unknown. In the present study, we aimed to investigate the role of epithelial EP4 in maintaining colonic homeostasis by characterizing the intestinal epithelial cell-specific EP4 knockout (EP4 cKO) mice. Mice harboring the epithelial EP4 deletion showed significantly lower colonic crypt depth and lower numbers of secretory cell lineages, as well as impaired epithelial cells in the colon. Interestingly, EP4-deficient colon epithelia showed a higher number of apoptotic cells. Consistent with the defect in mucosal barrier function of colonic epithelia and secretory cell lineages, EP4 cKO colon stroma showed enhanced immune cell infiltration, which was accompanied by increased production of inflammatory cytokines. Furthermore, EP4-deficient colons were susceptible to dextran sulfate sodium (DSS)-induced colitis. Our study is the first to demonstrate that epithelial EP4 loss resulted in potential "inflammatory" status under physiological conditions. These findings provided insights into the crucial role of epithelial PGE2/EP4 axis in maintaining intestinal homeostasis.


Subject(s)
Colitis, Ulcerative/genetics , Colitis, Ulcerative/pathology , Colon/pathology , Intestinal Mucosa/pathology , Receptors, Prostaglandin E, EP4 Subtype/genetics , Animals , Apoptosis , Colitis, Ulcerative/chemically induced , Colon/ultrastructure , Dextran Sulfate , Gene Deletion , Mice , Mice, Knockout
18.
Gastroenterology ; 155(1): 194-209.e2, 2018 07.
Article in English | MEDLINE | ID: mdl-29604291

ABSTRACT

BACKGROUND & AIMS: The ARID1A gene encodes a protein that is part of the large adenosine triphosphate (ATP)-dependent chromatin remodeling complex SWI/SNF and is frequently mutated in human pancreatic ductal adenocarcinomas (PDACs). We investigated the functions of ARID1A during formation of PDACs in mice. METHODS: We performed studies with Ptf1a-Cre;KrasG12D mice, which express activated Kras in the pancreas and develop pancreatic intraepithelial neoplasias (PanINs), as well as those with disruption of Aird1a (Ptf1a-Cre;KrasG12D;Arid1af/f mice) or disruption of Brg1 (encodes a catalytic ATPase of the SWI/SNF complex) (Ptf1a-Cre;KrasG12D; Brg1f/fmice). Pancreatic ductal cells (PDCs) were isolated from Arid1af/f mice and from Arid1af/f;SOX9OE mice, which overexpress human SOX9 upon infection with an adenovirus-expressing Cre recombinase. Pancreatic tissues were collected from all mice and analyzed by histology and immunohistochemistry; cells were isolated and grown in 2-dimensional and 3-dimensional cultures. We performed microarray analyses to compare gene expression patterns in intraductal papillary mucinous neoplasms (IPMNs) from the different strains of mice. We obtained 58 samples of IPMNs and 44 samples of PDACs from patients who underwent pancreatectomy in Japan and analyzed them by immunohistochemistry. RESULTS: Ptf1a-Cre;KrasG12D mice developed PanINs, whereas Ptf1a-Cre;KrasG12D;Arid1af/f mice developed IPMNs and PDACs; IPMNs originated from PDCs. ARID1A-deficient IPMNs did not express SOX9. ARID1A-deficient PDCs had reduced expression of SOX9 and dedifferentiated in culture. Overexpression of SOX9 in these cells allowed them to differentiate and prevented dilation of ducts. Among mice with pancreatic expression of activated Kras, those with disruption of Arid1a developed fewer PDACs from IPMNs than mice with disruption of Brg1. ARID1A-deficient IPMNs had reduced activity of the mTOR pathway. Human IPMN and PDAC specimens had reduced levels of ARID1A, SOX9, and phosphorylated S6 (a marker of mTOR pathway activation). Levels of ARID1A correlated with levels of SOX9 and phosphorylated S6. CONCLUSIONS: ARID1A regulates expression of SOX9, activation of the mTOR pathway, and differentiation of PDCs. ARID1A inhibits formation of PDACs from IPMNs in mice with pancreatic expression of activated KRAS and is down-regulated in IPMN and PDAC tissues from patients.


Subject(s)
Adenocarcinoma in Situ/genetics , Carcinoma, Pancreatic Ductal/genetics , Cell Differentiation/genetics , DNA-Binding Proteins/genetics , Nuclear Proteins/genetics , Pancreatic Ducts/cytology , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , SOX9 Transcription Factor/genetics , Adenocarcinoma in Situ/metabolism , Animals , Carcinogenesis/genetics , Carcinoma, Pancreatic Ductal/metabolism , Cell Culture Techniques , Mice , Pancreatic Neoplasms/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Transcription Factors
19.
BMC Pulm Med ; 18(1): 39, 2018 Feb 27.
Article in English | MEDLINE | ID: mdl-29486747

ABSTRACT

BACKGROUND: Actinomycosis is a rare bacterial infection caused by Actinomyces. The symptom of actinomycosis is nonspecific and radiological images present as a slow-progressive mass lesion similarly to malignancies. Thus, it is difficult to distinguish pulmonary actinomycosis from malignancies. CASE PRESENTATION: A 74-year-old male who had esophageal cancer and a pulmonary mass that was positive for 18F-fluorodeoxyglucose positron emission tomography/computed tomography was initially diagnosed with esophageal cancer with a lung metastasis because he was asymptomatic. However, aspiration of pleural effusion revealed that the pulmonary lesion was actinomycosis. CONCLUSION: We present a case of pulmonary actinomycosis mimicking a lung metastasis from esophageal cancer. Diagnosis of asymptomatic pulmonary actinomycosis is difficult, and needle aspiration could be useful for a definitive diagnosis of pulmonary actinomycosis.


Subject(s)
Actinomycosis/diagnosis , Esophageal Neoplasms/diagnosis , Pleural Effusion/etiology , Pleural Effusion/pathology , Pneumonia, Bacterial/diagnostic imaging , Actinomycosis/pathology , Aged , Biopsy, Needle , Diagnosis, Differential , Endoscopy, Digestive System , Esophageal Neoplasms/complications , Esophageal Neoplasms/therapy , Fluorodeoxyglucose F18 , Humans , Lung Neoplasms , Male , Neoplasm Metastasis , Positron Emission Tomography Computed Tomography
SELECTION OF CITATIONS
SEARCH DETAIL
...