Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 156
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 4699, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844471

ABSTRACT

Direct conversion from terahertz photon to charge current is a key phenomenon for terahertz photonics. Quantum geometrical description of optical processes in crystalline solids predicts existence of field-unbiased dc photocurrent arising from terahertz-light generation of magnetic excitations in multiferroics, potentially leading to fast and energy-efficient terahertz devices. Here, we demonstrate the dc charge current generation from terahertz magnetic excitations in multiferroic perovskite manganites with spin-driven ferroelectricity, while keeping an insulating state with no free carrier. It is also revealed that electromagnon, which ranges sub-terahertz to 2 THz, as well as antiferromagnetic resonance shows the giant conversion efficiency. Polar asymmetry induced by the cycloidal spin order gives rise to this terahertz-photon-induced dc photocurrent, and no external magnetic and electric bias field are required for this conversion process. The observed phenomena are beyond the conventional photovoltaics in semi-classical regime and demonstrate the essential role of quantum geometrical aspect in low-energy optical processes. Our finding establishes a paradigm of terahertz photovoltaic phenomena, paving a way for terahertz photonic devices and energy harvesting.

2.
Phys Rev Lett ; 132(19): 199902, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38804959

ABSTRACT

This corrects the article DOI: 10.1103/PhysRevLett.132.126701.

3.
Nat Mater ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605196

ABSTRACT

Polar metals have recently garnered increasing interest because of their promising functionalities. Here we report the experimental realization of an intrinsic coexisting ferromagnetism, polar distortion and metallicity in quasi-two-dimensional Ca3Co3O8. This material crystallizes with alternating stacking of oxygen tetrahedral CoO4 monolayers and octahedral CoO6 bilayers. The ferromagnetic metallic state is confined within the quasi-two-dimensional CoO6 layers, and the broken inversion symmetry arises simultaneously from the Co displacements. The breaking of both spatial-inversion and time-reversal symmetries, along with their strong coupling, gives rise to an intrinsic magnetochiral anisotropy with exotic magnetic field-free non-reciprocal electrical resistivity. An extraordinarily robust topological Hall effect persists over a broad temperature-magnetic field phase space, arising from dipole-induced Rashba spin-orbit coupling. Our work not only provides a rich platform to explore the coupling between polarity and magnetism in a metallic system, with extensive potential applications, but also defines a novel design strategy to access exotic correlated electronic states.

4.
Phys Rev Lett ; 132(11): 116501, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38563933

ABSTRACT

Recently, the intriguing phenomenon of emergent inductance has been theoretically proposed and experimentally observed in nanoscale spiral spin systems subjected to oscillating currents. Building upon these recent developments, we put forward the concept of emergent inductance in strongly correlated magnets in the normal state with spin fluctuations. It is argued that the inductance shows a positive peak at temperatures above the ordering temperature. As for the frequency dependence, in systems featuring a single-band structure or a gapped multiband, we observe a Drude-type inductance, while in gapless multiband systems, a non-Drude inductance with a sharp dip near zero frequency. These results offer valuable insights into the behavior of strongly correlated magnets and open up new possibilities for harnessing emergent inductance in practical applications.

6.
Phys Rev Lett ; 132(12): 126701, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38579209

ABSTRACT

Vortex rings are ubiquitous topological structures in nature. In solid magnetic systems, their formation leads to intriguing physical phenomena and potential device applications. However, realizing these topological magnetic vortex rings and manipulating their topology on demand have still been challenging. Here, we theoretically show that topological vortex rings can be created by a current pulse in a chiral magnetic nanocylinder with a trench structure. The creation process involves the formation of a vortex ring street, i.e., a chain of magnetic vortex rings with an alternative linking manner. The created vortex rings can be bounded with monopole-antimonopole pairs and possess a rich and controllable linking topology (e.g., Hopf link and Solomon link), which is determined by the duration and amplitude of the current pulse. Our proposal paves the way for the realization and manipulation of diverse three-dimensional (3D) topological spin textures and could catalyze the development of 3D spintronic devices.

7.
Proc Natl Acad Sci U S A ; 121(13): e2313488121, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38513104

ABSTRACT

Weyl semimetal showing open-arc surface states is a prominent example of topological quantum matter in three dimensions. With the bulk-boundary correspondence present, nontrivial surface-bulk hybridization is inevitable but less understood. Spectroscopies have been often limited to verifying the existence of surface Fermi arcs, whereas its spectral shape related to the hybridization profile in energy-momentum space is not well studied. We present an exactly solvable formalism at the surface for a wide range of prototypical Weyl semimetals. The resonant surface state and the bulk influence coexist as a surface-bulk hybrid and are treated in a unified manner. Directly accessible to angle-resolved photoemission spectroscopy, we analytically reveal universal information about the system obtained from the spectroscopy of resonant topological states. We systematically find inhomogeneous and anisotropic singular responses around the surface-bulk merging borderline crossing Weyl points, highlighting its critical role in the Weyl topology. The response in scanning tunneling spectroscopy is also discussed. The results will provide much-needed insight into the surface-bulk-coupled physical properties and guide in-depth spectroscopic investigation of the nontrivial hybrid in many topological semimetal materials.

8.
Nat Commun ; 15(1): 243, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38172119

ABSTRACT

The thermal Hall effect in magnetic insulators has been considered a powerful method for examining the topological nature of charge-neutral quasiparticles such as magnons. Yet, unlike the kagome system, the triangular lattice has received less attention for studying the thermal Hall effect because the scalar spin chirality cancels out between adjacent triangles. However, such cancellation cannot be perfect if the triangular lattice is distorted. Here, we report that the trimerized triangular lattice of multiferroic hexagonal manganite YMnO3 produces a highly unusual thermal Hall effect under an applied magnetic field. Our theoretical calculations demonstrate that the thermal Hall conductivity is related to the splitting of the otherwise degenerate two chiralities of its 120˚ magnetic structure. Our result is one of the most unusual cases of topological physics due to this broken Z2 symmetry of the chirality in the supposedly paramagnetic state of YMnO3, due to strong topological spin fluctuations with the additional intricacy of a Dzyaloshinskii-Moriya interaction.

9.
Sci Bull (Beijing) ; 69(3): 325-333, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38129237

ABSTRACT

Non-Hermitian systems have been discussed mostly in the context of open systems and nonequilibrium. Recent experimental progress is much from optical, cold-atomic, and classical platforms due to the vast tunability and clear identification of observables. However, their counterpart in solid-state electronic systems in equilibrium remains unmasked although highly desired, where a variety of materials are available, calculations are solidly founded, and accurate spectroscopic techniques can be applied. We demonstrate that, in the surface state of a topological insulator with spin-dependent relaxation due to magnetic impurities, highly nontrivial topological soliton spin textures appear in momentum space. Such spin-channel phenomena are delicately related to the type of non-Hermiticity and correctly reveal the most robust non-Hermitian features detectable spectroscopically. Moreover, the distinct topological soliton objects can be deformed to each other, mediated by topological transitions driven by tuning across a critical direction of doped magnetism. These results not only open a solid-state avenue to exotic spin patterns via spin- and angle-resolved photoemission spectroscopy, but also inspire non-Hermitian dissipation engineering of spins in solids.

10.
Nano Lett ; 23(24): 11485-11492, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38063397

ABSTRACT

The spin Hall effect (SHE) can generate a pure spin current by an electric current, which is promisingly used to electrically control magnetization. To reduce the power consumption of this control, a giant spin Hall angle (SHA) in the SHE is desired in low-resistivity systems for practical applications. Here, critical spin fluctuation near the antiferromagnetic (AFM) phase transition in chromium (Cr) is proven to be an effective mechanism for creating an additional part of the SHE, named the fluctuation spin Hall effect. The SHA is significantly enhanced when the temperature approaches the Néel temperature (TN) of Cr and has a peak value of -0.36 near TN. This value is higher than the room-temperature value by 153% and leads to a low normalized power consumption among known spin-orbit torque materials. This study demonstrates the critical spin fluctuation as a prospective way to increase the SHA and enriches the AFM material candidates for spin-orbitronic devices.

11.
Phys Rev Lett ; 131(9): 096001, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37721825

ABSTRACT

The Josephson rectification effect, where the resistance is finite in one direction while zero in the other, has been recently realized experimentally. The resulting Josephson diode has many potential applications on superconducting devices, including quantum computers. Here, we theoretically show that a superconductor-normal metal-superconductor Josephson junction diode on the two-dimensional surface of a topological insulator has large tunability. The magnitude and sign of the diode quality factor strongly depend on the external magnetic field, gate voltage, and the length of the junction. Such rich properties stem from the interplay between different current-phase relations for the multiple transverse transport channels, and can be used for designing realistic superconducting diode devices.

12.
Nat Commun ; 14(1): 3330, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37286618

ABSTRACT

The phenomenon that critical supercurrents along opposite directions become unequal is called the supercurrent diode effect (SDE). It has been observed in various systems and can often be understood by combining spin-orbit coupling and Zeeman field, which break the spatial-inversion and time-reversal symmetries, respectively. Here, we theoretically investigate another mechanism of breaking these symmetries and predict the existence of the SDE in chiral nanotubes without spin-orbit coupling. The symmetries are broken by the chiral structure and a magnetic flux through the tube. With a generalized Ginzburg-Landau theory, we obtain the main features of the SDE in its dependence on system parameters. We further show that the same Ginzburg-Landau free energy leads to another important manifestation of the nonreciprocity in superconducting systems, i.e., the nonreciprocal paraconductivity (NPC) slightly above the transition temperature. Our study suggests a new class of realistic platforms to investigate nonreciprocal properties of superconducting materials. It also provides a theoretical link between the SDE and the NPC, which were often studied separately.

13.
Natl Sci Rev ; 10(3): nwac210, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37035021

ABSTRACT

Correlated states have emerged in low-dimensional systems owing to enhanced Coulomb interactions. Elucidating these states requires atomic-scale characterization and delicate control capabilities. Herein, spectroscopic imaging-scanning tunneling microscopy was employed to investigate the correlated states residing in 1D electrons of the monolayer and bilayer MoSe2 mirror twin boundary (MTB). The Coulomb energies, determined by the wire length, drive the MTB into two types of ground states with distinct respective out-of-phase and in-phase charge orders. The two ground states can be reversibly converted through a metastable zero-energy state with in situ voltage pulses, which tune the electron filling of the MTB via a polaronic process, substantiated by first-principles calculations. Our Hubbard model calculation with an exact diagonalization method reveals the ground states as correlated insulators from an on-site U-originated Coulomb interaction, dubbed the Hubbard-type Coulomb blockade effect. Our study lays a foundation for understanding and tailoring correlated physics in complex systems.

14.
Phys Rev Lett ; 130(13): 136701, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37067304

ABSTRACT

Dynamical spin fluctuations in magnets can be endowed with a slight bent toward left- or right-handed chirality by Dzyaloshinskii-Moriya interactions. However, little is known about the crucial role of lattice geometry on these chiral spin fluctuations and on fluctuation-related transport anomalies driven by the quantum-mechanical (Berry) phase of conduction electrons. Via thermoelectric Nernst effect and electric Hall effect experiments, we detect chiral spin fluctuations in the paramagnetic regime of a kagome lattice magnet; these signals are largely absent in a comparable triangular lattice magnet. Supported by Monte Carlo calculations, we identify lattices with at least two dissimilar plaquettes as most promising for Berry phase phenomena driven by thermal fluctuations in paramagnets.

15.
Adv Mater ; 35(20): e2210646, 2023 May.
Article in English | MEDLINE | ID: mdl-36871172

ABSTRACT

3D topological spin textures-hopfions-are predicted in helimagnetic systems but are not experimentally confirmed thus far. By utilizing an external magnetic field and electric current in the present study, 3D topological spin textures are realized, including fractional hopfions with nonzero topological index, in a skyrmion-hosting helimagnet FeGe. Microsecond current pulses are employed to control the dynamics of the expansion and contraction of a bundle composed of a skyrmion and a fractional hopfion, as well as its current-driven Hall motion. This research approach has demonstrated the novel electromagnetic properties of fractional hopfions and their ensembles in helimagnetic systems.

16.
Phys Rev Lett ; 129(21): 216601, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36461953

ABSTRACT

The relativistic Dirac equation covers the fundamentals of electronic phenomena in solids and as such it effectively describes the electronic states of the topological insulators like Bi_{2}Se_{3} and Bi_{2}Te_{3}. Topological insulators feature gapless surface states and, moreover, magnetic doping and resultant ferromagnetic ordering break time-reversal symmetry to realize quantum anomalous Hall and Chern insulators. Here, we focus on the bulk and investigate the mutual coupling of electronic and magnetic properties of Dirac electrons. Without carrier doping, spiral magnetic orders cause a ferroelectric polarization through the spin-orbit coupling. In a doped metallic state, the anisotropic magnetoresistance arises without uniform magnetization. We find that electric current induces uniform magnetization and conversely an oscillating magnetic order induces electric current. Our model provides a coherent and unified description of all those phenomena. The mutual control of electric and magnetic properties demonstrates implementations of antiferromagnetic spintronics. We also discuss the stoichiometric magnetic topological insulator MnBi_{2}Te_{4}.

17.
Proc Natl Acad Sci U S A ; 119(14): e2122313119, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35344426

ABSTRACT

SignificanceThe quantum-mechanical geometric phase of electrons provides various phenomena such as the dissipationless photocurrent generation through the shift current mechanism. So far, the photocurrent generations are limited to above or near the band-gap photon energy, which contradicts the increasing demand of the low-energy photonic functionality. We demonstrate the photocurrent through the optical phonon excitations in ferroelectric BaTiO3 by using the terahertz light with photon energy far below the band gap. This photocurrent without electron-hole pair generation is never explained by the semiclassical treatment of electrons and only arises from the quantum-mechanical geometric phase. The observed photon-to-current conversion efficiency is as large as that for electronic excitation, which can be well accounted for by newly developed theoretical formulation of shift current.

18.
Nano Lett ; 22(7): 3033-3039, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35332773

ABSTRACT

Weyl semimetals are emerging to become a new class of quantum-material platform for various novel phenomena. Especially, the Weyl orbit made from surface Fermi arcs and bulk relativistic states is expected to play a key role in magnetotransport, leading even to a three-dimensional quantum Hall effect (QHE). It is experimentally and theoretically important although yet unclear whether it bears essentially the same phenomenon as the conventional two-dimensional QHE. We discover an unconventional fully three-dimensional anisotropy in the quantum transport under a magnetic field. Strong suppression and even disappearance of the QHE occur when the Hall-bar current is rotated away from being transverse to parallel with respect to the Weyl point alignment, which is attributed to a peculiar absence of conventional bulk-boundary correspondence. Besides, transport along the magnetic field can exhibit a remarkable reversal from negative to positive magnetoresistance. These results establish the uniqueness of this QHE system as a novel three-dimensional quantum matter.

19.
Proc Natl Acad Sci U S A ; 119(12): e2116976119, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35302888

ABSTRACT

SignificanceOptically excited systems can host unprecedented phenomena and reveal key information. The spin-channel physics in the photoexcited dynamics of quantum matter remains largely unexplored. This study finds the topological surface state under contemporary time-resolved pump-probe spectroscopy an exceptionally capable platform in this regard. Spin signals exhibit interesting tornado-like spiral patterns, and the unusual topological optical activity can be indicative of spintronic applications. This exemplifies a purely nonequilibrium topological winding phenomenon, where all the hidden helicity factors in the light-matter-coupled system are robustly encoded. These results open a direction of nonequilibrium topological spin states in quantum materials.

20.
Nat Mater ; 21(3): 305-310, 2022 03.
Article in English | MEDLINE | ID: mdl-35087239

ABSTRACT

The concept of topology has dramatically expanded the research landscape of magnetism, leading to the discovery of numerous magnetic textures with intriguing topological properties. A magnetic skyrmion is an emergent topological magnetic texture with a string-like structure in three dimensions and a disk-like structure in one and two dimensions. Skyrmions in zero dimensions have remained elusive due to challenges from many competing orders. Here, by combining electron holography and micromagnetic simulations, we uncover the real-space magnetic configurations of a skyrmionic vortex structure confined in a B20-type FeGe tetrahedral nanoparticle. An isolated skyrmionic vortex forms at the ground state and this texture shows excellent robustness against temperature without applying a magnetic field. Our findings shed light on zero-dimensional geometrical confinement as a route to engineer and manipulate individual skyrmionic metastructures.


Subject(s)
Nanoparticles
SELECTION OF CITATIONS
SEARCH DETAIL
...