Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 14: 1188864, 2023.
Article in English | MEDLINE | ID: mdl-37564644

ABSTRACT

Speck assembly is the hallmark of NLRP3 inflammasome activation. The 1µm structure comprising of NLRP3 and ASC is the first observable phenotype of NLRP3 activation. While the common consensus is that the specks are the site of inflammasome activity, no direct experimental evidence exists to support this notion. In these 22 years, since the inflammasome discovery, several research studies have been published which directly or indirectly support or refute the idea of speck being the inflammasome. This review compiles the data from two decades of research to answer a long-standing question: "What are NLRP3-ASC specks?"


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , CARD Signaling Adaptor Proteins/genetics
2.
Methods Mol Biol ; 2635: 185-202, 2023.
Article in English | MEDLINE | ID: mdl-37074664

ABSTRACT

Examining inflammasome-associated speck structures is one of the most preferred and easiest ways to evaluate inflammasome activation. Microscopy-based evaluation of specks is preferable, but this approach is time-consuming and limited to small sample sizes. Speck-containing cells can also be quantitated by a flow cytometric method, time of flight inflammasome evaluation (TOFIE). However, TOFIE cannot perform single-cell analysis such as simultaneously visualizing ASC specks and caspase-1 activity, their location, and physical characteristics. Here we describe the application of an imaging flow cytometry-based approach that overcomes these limitations. Inflammasome and Caspase-1 Activity Characterization and Evaluation (ICCE) is a high-throughput, single-cell, rapid image analysis utilizing the Amnis ImageStream X instrument with over 99.5% accuracy. ICCE quantitatively and qualitatively characterizes the frequency, area, and cellular distribution of ASC specks and caspase-1 activity in mouse and human cells.


Subject(s)
CARD Signaling Adaptor Proteins , Inflammasomes , Humans , Animals , Mice , Inflammasomes/metabolism , CARD Signaling Adaptor Proteins/metabolism , Macrophages/metabolism , Microscopy , Caspases , Caspase 1/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein
3.
Immunity ; 56(5): 998-1012.e8, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37116499

ABSTRACT

Cytosolic innate immune sensing is critical for protecting barrier tissues. NOD1 and NOD2 are cytosolic sensors of small peptidoglycan fragments (muropeptides) derived from the bacterial cell wall. These muropeptides enter cells, especially epithelial cells, through unclear mechanisms. We previously implicated SLC46 transporters in muropeptide transport in Drosophila immunity. Here, we focused on Slc46a2, which was highly expressed in mammalian epidermal keratinocytes, and showed that it was critical for the delivery of diaminopimelic acid (DAP)-muropeptides and activation of NOD1 in keratinocytes, whereas the related transporter Slc46a3 was critical for delivering the NOD2 ligand MDP to keratinocytes. In a mouse model, Slc46a2 and Nod1 deficiency strongly suppressed psoriatic inflammation, whereas methotrexate, a commonly used psoriasis therapeutic, inhibited Slc46a2-dependent transport of DAP-muropeptides. Collectively, these studies define SLC46A2 as a transporter of NOD1-activating muropeptides, with critical roles in the skin barrier, and identify this transporter as an important target for anti-inflammatory intervention.


Subject(s)
Dermatitis , Methotrexate , Mice , Animals , Methotrexate/pharmacology , Inflammation , Peptidoglycan/metabolism , Epithelial Cells/metabolism , Nod1 Signaling Adaptor Protein/metabolism , Nod2 Signaling Adaptor Protein/metabolism , Immunity, Innate , Mammals
4.
Front Immunol ; 13: 896353, 2022.
Article in English | MEDLINE | ID: mdl-35663964

ABSTRACT

Nod-Like Receptor (NLR) is the largest family of Pathogen Recognition Receptors (PRRs) that patrols the cytosolic environment. NLR engagement drives caspase-1 activation that cleaves pro-IL-1B which then gets secreted. Released IL-1B recruits immune cells to the site of infection/injury. Caspase-1 also cleaves Gasdermin-D (GSDM-D) that forms pores within the plasma membrane driving inflammatory cell death called pyroptosis. NLRP3 is the most extensively studied NLR. The NLRP3 gene is encoded by 9 exons, where exon 1 codes for pyrin domain, exon 3 codes for NACHT domain, and Leucine Rich Repeat (LRR) domain is coded by exon 4-9. Exon 2 codes for a highly disorganized loop that connects the rest of the protein to the pyrin domain and may be involved in NLRP3 regulation. The NLRP3 inflammasome is activated by many structurally divergent agonists of microbial, environmental, and host origin. Activated NLRP3 interacts with an adaptor protein, ASC, that bridges it to pro-Caspase-1 forming a multi-protein complex called inflammasome. Dysregulation of NLRP3 inflammasome activity is a hallmark of pathogenesis in several human diseases, indicating its highly significant clinical relevance. In this review, we summarize the existing knowledge about the mechanism of activation of NLRP3 and its regulation during activation by infectious and sterile triggers.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Caspase 1/metabolism , Caspases , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Proteins , Pyroptosis
5.
Front Immunol ; 12: 752482, 2021.
Article in English | MEDLINE | ID: mdl-34745125

ABSTRACT

Although considered the ternary inflammasome structure, whether the singular, perinuclear NLRP3:ASC speck is synonymous with the NLRP3 inflammasome is unclear. Herein, we report that the NLRP3:ASC speck is not required for nigericin-induced inflammasome activation but facilitates and maximizes IL-1ß processing. Furthermore, the NLRP3 agonists H2O2 and MSU elicited IL-1ß maturation without inducing specks. Notably, caspase-1 activity is spatially distinct from the speck, occurring at multiple cytoplasmic sites. Additionally, caspase-1 activity negatively regulates speck frequency and speck size, while speck numbers and IL-1ß processing are negatively correlated, cyclical and can be uncoupled by NLRP3 mutations or inhibiting microtubule polymerization. Finally, when specks are present, caspase-1 is likely activated after leaving the speck structure. Thus, the speck is not the NLRP3 inflammasome itself, but is instead a dynamic structure which may amplify the NLRP3 response to weak stimuli by facilitating the formation and release of small NLRP3:ASC complexes which in turn activate caspase-1.


Subject(s)
CARD Signaling Adaptor Proteins , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Cells, Cultured , Humans , Nuclear Speckles
6.
Front Immunol ; 11: 1828, 2020.
Article in English | MEDLINE | ID: mdl-32983094

ABSTRACT

The NLRP3 inflammasome is central to host defense and implicated in various inflammatory diseases and conditions. While the favored paradigm of NLRP3 inflammasome activation stipulates a unifying signal intermediate that de-represses NLRP3, this view has not been tested. Further, structures within NLRP3 required for inflammasome activation are poorly defined. Here we demonstrate that while the NLRP3 LRRs are not auto-repressive and are not required for inflammasome activation by all agonists, distinct sequences within the NLRP3 LRRs positively and negatively modulate inflammasome activation by specific ligands. In addition, elements within the HD1/HD2 "hinge" of NLRP3 and the nucleotide-binding domain have contrasting functions depending upon the specific agonists. Further, while NLRP3 1-432 is minimally sufficient for inflammasome activation by all agonists tested, the pyrin, and linker domains (1-134) function cooperatively and are sufficient for inflammasome activation by certain agonists. Conserved cysteines 8 and 108 appear important for inflammasome activation by sterile, but not infectious insults. Our results define common and agonist-specific regions of NLRP3 that likely mediate ligand-specific responses, discount the hypothesis that NLRP3 inflammasome activation has a unified mechanism, and implicate NLRP3 as an integrator of agonist-specific, inflammasome activating signals.


Subject(s)
Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Adaptor Proteins, Signal Transducing/immunology , Adaptor Proteins, Signal Transducing/metabolism , Animals , Apoptosis Regulatory Proteins/immunology , Apoptosis Regulatory Proteins/metabolism , Francisella/physiology , HEK293 Cells , Humans , Inflammasomes/agonists , Inflammasomes/chemistry , Inflammasomes/immunology , Leucine , Ligands , Listeria monocytogenes/physiology , Macrophages/immunology , Macrophages/metabolism , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/agonists , NLR Family, Pyrin Domain-Containing 3 Protein/chemistry , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , NLR Proteins , Pyrin Domain , Repetitive Sequences, Amino Acid
7.
J Immunol ; 202(3): 1003-1015, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30598512

ABSTRACT

Inflammasome dysregulation is a hallmark of various inflammatory diseases. Evaluating inflammasome-associated structures (ASC specks) and caspase-1 activity by microscopy is time consuming and limited by small sample size. The current flow cytometric method, time of flight inflammasome evaluation (TOFIE), cannot visualize ASC specks or caspase-1 activity, making colocalization studies of inflammasome components and enzymatic activity impossible. We describe a rapid, high-throughput, single-cell, fluorescence-based image analysis method utilizing the Amnis ImageStreamX instrument that quantitatively and qualitatively characterizes the frequency, area, and cellular distribution of ASC specks and caspase-1 activity in mouse and human cells. Unlike TOFIE, this method differentiates between singular perinuclear specks and false positives. With our technique we also show that the presence of NLRP3 reduces the size of ASC specks, which is further reduced by the presence of active caspase-1. The capacity of our approach to simultaneously detect and quantify ASC specks and caspase-1 activity, both at the population and single-cell level, renders it the most powerful tool available for visualizing and quantifying the impact of mutations on inflammasome assembly and activity.


Subject(s)
CARD Signaling Adaptor Proteins/analysis , Caspase 1/analysis , Flow Cytometry/methods , Image Processing, Computer-Assisted/methods , Inflammasomes/metabolism , Single-Cell Analysis/methods , Fluorescence , HEK293 Cells , Humans , Macrophages , NLR Family, Pyrin Domain-Containing 3 Protein/agonists , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , THP-1 Cells
SELECTION OF CITATIONS
SEARCH DETAIL