Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
iScience ; 27(7): 110274, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39040061

ABSTRACT

Given the extensive participation of myeloid cells (especially monocytes and macrophages) in both inflammation and resolution phases post-myocardial infarction (MI) owing to their biphasic role, these cells are considered as crucial players in the disease pathogenesis. Multiple studies have agreed on the significant contribution of macrophage polarization theory (M2 vs. M1) while determining the underlying reasons behind the observed biphasic effects; nevertheless, this simplistic classification attracts severe drawbacks. The advent of multiple advanced technologies based on OMICS platforms facilitated a successful path to explore comprehensive cellular signatures that could expedite our understanding of macrophage heterogeneity and plasticity. While providing an overall basis behind the MI disease pathogenesis, this review delves into the literature to discuss the current knowledge on multiple macrophage clusters, including the future directions in this research arena. In the end, our focus will be on outlining the possible therapeutic implications based on the emerging observations.

2.
J Am Heart Assoc ; 13(8): e033881, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38563369

ABSTRACT

BACKGROUND: Pyroptosis executor GsdmD (gasdermin D) promotes atherosclerosis in mice and humans. Disulfiram was recently shown to potently inhibit GsdmD, but the in vivo efficacy and mechanism of disulfiram's antiatherosclerotic activity is yet to be explored. METHODS AND RESULTS: We used human/mouse macrophages, endothelial cells, and smooth muscle cells and a hyperlipidemic mouse model of atherosclerosis to determine disulfiram antiatherosclerotic efficacy and mechanism. The effects of disulfiram on several atheroprotective pathways such as autophagy, efferocytosis, phagocytosis, and gut microbiota were determined. Atomic force microscopy was used to determine the effects of disulfiram on the biophysical properties of the plasma membrane of macrophages. Disulfiram-fed hyperlipidemic apolipoprotein E-/- mice showed significantly reduced interleukin-1ß release upon in vivo Nlrp3 (NLR family pyrin domain containing 3) inflammasome activation. Disulfiram-fed mice showed smaller atherosclerotic lesions (~27% and 29% reduction in males and females, respectively) and necrotic core areas (~50% and 46% reduction in males and females, respectively). Disulfiram induced autophagy in macrophages, smooth muscle cells, endothelial cells, hepatocytes/liver, and atherosclerotic plaques. Disulfiram modulated other atheroprotective pathways (eg, efferocytosis, phagocytosis) and gut microbiota. Disulfiram-treated macrophages showed enhanced phagocytosis/efferocytosis, with the mechanism being a marked increase in cell-surface expression of efferocytic receptor MerTK. Atomic force microscopy analysis revealed altered biophysical properties of disulfiram-treated macrophages, showing increased order-state of plasma membrane and increased adhesion strength. Furthermore, 16sRNA sequencing of disulfiram-fed hyperlipidemic mice showed highly significant enrichment in atheroprotective gut microbiota Akkermansia and a reduction in atherogenic Romboutsia species. CONCLUSIONS: Taken together, our data show that disulfiram can simultaneously modulate several atheroprotective pathways in a GsdmD-dependent as well as GsdmD-independent manner.


Subject(s)
Atherosclerosis , Gastrointestinal Microbiome , Male , Female , Mice , Humans , Animals , Disulfiram , Efferocytosis , Endothelial Cells/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Atherosclerosis/prevention & control , Autophagy
3.
J Mol Cell Cardiol ; 187: 80-89, 2024 02.
Article in English | MEDLINE | ID: mdl-38163742

ABSTRACT

Of all the different risk factors known to cause cardiovascular disease (CVD), age and sex are considered to play a crucial role. Aging follows a continuum from birth to death, and therefore it inevitably acts as a risk for CVD. Along with age, sex differences have also been shown to demonstrate variations in immune system responses to pathological insults. It has been widely perceived that females are protected against myocardial infarction (MI) and the protection is quite apparent in young vs. old women. Acute MI leads to changes in the population of myeloid and lymphoid cells at the injury site with myeloid bias being observed in the initial inflammation and the lymphoid in the late-resolution phases of the pathology. Multiple evidence demonstrates that aging enhances damage to various cellular processes through inflamm-aging, an inflammatory process identified to increase pro-inflammatory markers in circulation and tissues. Following MI, marked changes were observed in different sub-sets of major myeloid cell types viz., neutrophils, monocytes, and macrophages. There is a paucity of information regarding the tissue and site-specific functions of these sub-sets. In this review, we highlight the importance of age and sex as crucial risk factors by discussing their role during MI-induced myelopoiesis while emphasizing the current status of myeloid cell sub-sets. We further put forth the need for designing and executing age and sex interaction studies aimed to determine the appropriate age and sex to develop personalized therapeutic strategies post-MI.


Subject(s)
Myelopoiesis , Myocardial Infarction , Female , Humans , Male , Myocardial Infarction/metabolism , Monocytes/metabolism , Macrophages/metabolism , Inflammation/metabolism
4.
PLoS Pathog ; 19(8): e1011573, 2023 08.
Article in English | MEDLINE | ID: mdl-37624851

ABSTRACT

Pseudomonas aeruginosa (P.a.) infection accounts for nearly 20% of all cases of hospital acquired pneumonia with mortality rates >30%. P.a. infection induces a robust inflammatory response, which ideally enhances bacterial clearance. Unfortunately, excessive inflammation can also have negative effects, and often leads to cardiac dysfunction with associated morbidity and mortality. However, it remains unclear how P.a. lung infection causes cardiac dysfunction. Using a murine pneumonia model, we found that P.a. infection of the lungs led to severe cardiac left ventricular dysfunction and electrical abnormalities. More specifically, we found that neutrophil recruitment and release of S100A8/A9 in the lungs activates the TLR4/RAGE signaling pathways, which in turn enhance systemic inflammation and subsequent cardiac dysfunction. Paradoxically, global deletion of S100A8/A9 did not improve but aggravated cardiac dysfunction and mortality likely due to uncontrolled bacterial burden in the lungs and heart. Our results indicate that P.a. infection induced release of S100A8/9 is double-edged, providing increased risk for cardiac dysfunction yet limiting P.a. growth.


Subject(s)
Heart Diseases , Pseudomonas Infections , Animals , Mice , Pseudomonas aeruginosa , Heart , Inflammation , Lung
6.
Diabetol Metab Syndr ; 15(1): 156, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37461091

ABSTRACT

BACKGROUND: Syndecan-4 (SDC4) is a member of the heparan sulfate proteoglycan family of cell-surface receptors. We and others previously reported that variation in the SDC4 gene was associated with several components of the metabolic syndrome, including intra-abdominal fat, fasting glucose and triglyceride levels, and hypertension, in human cohorts. Additionally, we demonstrated that high fat diet (HFD)-induced obese female mice with a Sdc4 genetic deletion had higher visceral adiposity and a worse metabolic profile than control mice. Here, we aimed to first investigate whether the mouse Sdc4 null mutation impacts metabolic phenotypes in a sex- and diet-dependent manner. We then tested whether SDC4 polymorphisms are related to the metabolic syndrome (MetS) in humans. METHODS: For the mouse experiment, Sdc4-deficient (Sdc4-/-) and wild-type (WT) mice were treated with 14-weeks of low-fat diet (LFD). Body composition, energy balance, and selected metabolic phenotypes were assessed. For the human genetic study, we used logistic regression models to test 11 SDC4 SNPs for association with the MetS and its components in a cohort of 274 (113 with MetS) elderly subjects from southern Italy. RESULTS: Following the dietary intervention in mice, we observed that the effects of the Sdc4 null mutation on several phenotypes were different from those previously reported in the mice kept on an HFD. Nonetheless, LFD-fed female Sdc4-/- mice, but not males, displayed higher levels of triglycerides and lower insulin sensitivity at fasting than WT mice, as seen earlier in the HFD conditions. In the parallel human study, we found that carriers of SDC4 rs2228384 allele C and rs2072785 allele T had reduced risk of MetS. The opposite was true for carriers of the SDC4 rs1981429 allele G. Additionally, the SNPs were found related to fasting triglyceride levels and triglyceride glucose (TyG) index, a reliable indicator of insulin resistance, with sex-stratified analysis detecting the association of rs1981429 with these phenotypes only in females. CONCLUSIONS: Altogether, our results suggest that SDC4 is an evolutionary conserved genetic determinant of MetS and that its genetic variation is associated with fasting triglyceride levels in a female-specific manner.

7.
Arthritis Res Ther ; 25(1): 85, 2023 05 20.
Article in English | MEDLINE | ID: mdl-37210569

ABSTRACT

BACKGROUND: Insulin resistance affects a substantial proportion of patients with rheumatoid arthritis (RA). Skeletal muscle mitochondrial dysfunction results in the accumulation of lipid intermediates that interfere with insulin signaling. We therefore sought to determine if lower oxidative phosphorylation and muscle mitochondrial content are associated with insulin resistance in patients with RA. METHODS: This was a cross-sectional prospective study of RA patients. Matsuda index from the glucose tolerance test was used to estimate insulin sensitivity. Mitochondrial content was measured by citrate synthase (CS) activity in snap-frozen muscle samples. Mitochondrial function was measured by using high-resolution respirometry of permeabilized muscle fibers and electron transport chain complex IV enzyme kinetics in isolated mitochondrial subpopulations. RESULTS: RA participants demonstrated lower insulin sensitivity as measured by the Matsuda index compared to controls [median 3.95 IQR (2.33, 5.64) vs. 7.17 (5.83, 7.75), p = 0.02]. There was lower muscle mitochondrial content among RA vs. controls [median 60 mU/mg IQR (45, 80) vs. 79 mU/mg (65, 97), p = 0.03]. Notably, OxPhos normalized to mitochondrial content was higher among RA vs. controls [mean difference (95% CI) = 0.14 (0.02, 0.26), p = 0.03], indicating a possible compensatory mechanism for lower mitochondrial content or lipid overload. Among RA participants, the activity of muscle CS activity was not correlated with the Matsuda index (ρ = - 0.05, p = 0.84), but it was positively correlated with self-reported (IPAQ) total MET-minutes/week (ρ = 0.44, p = 0.03) and Actigraph-measured time on physical activity (MET rate) (ρ = 0.47, p = 0.03). CONCLUSIONS: Mitochondrial content and function were not associated with insulin sensitivity among participants with RA. However, our study demonstrates a significant association between muscle mitochondrial content and physical activity level, highlighting the potential for future exercise interventions that enhance mitochondrial efficiency in RA patients.


Subject(s)
Arthritis, Rheumatoid , Insulin Resistance , Humans , Insulin Resistance/physiology , Case-Control Studies , Cross-Sectional Studies , Prospective Studies , Muscle, Skeletal , Mitochondria , Arthritis, Rheumatoid/metabolism , Lipids , Mitochondria, Muscle/metabolism
9.
Clin Transl Immunology ; 12(4): e1446, 2023.
Article in English | MEDLINE | ID: mdl-37091327

ABSTRACT

Objectives: The leading cause of mortality in patients with rheumatoid arthritis is atherosclerotic cardiovascular disease (CVD). We have shown that murine arthritis impairs atherosclerotic lesion regression, because of cellular cholesterol efflux defects in haematopoietic stem and progenitor cells (HSPCs), causing monocytosis and impaired atherosclerotic regression. Therefore, we hypothesised that improving cholesterol efflux using a Liver X Receptor (LXR) agonist would improve cholesterol efflux and improve atherosclerotic lesion regression in arthritis. Methods: Ldlr -/- mice were fed a western-type diet for 14 weeks to initiate atherogenesis, then switched to a chow diet to induce lesion regression and divided into three groups; (1) control, (2) K/BxN serum transfer inflammatory arthritis (K/BxN) or (3) K/BxN arthritis and LXR agonist T0901317 daily for 2 weeks. Results: LXR activation during murine inflammatory arthritis completely restored atherosclerotic lesion regression in arthritic mice, evidenced by reduced lesion size, macrophage abundance and lipid content. Mechanistically, serum from arthritic mice promoted foam cell formation, demonstrated by increased cellular lipid accumulation in macrophages and paralleled by a reduction in mRNA of the cholesterol efflux transporters Abca1, Abcg1 and Apoe. T0901317 reduced lipid loading and increased Abca1 and Abcg1 expression in macrophages exposed to arthritic serum and increased ABCA1 levels in atherosclerotic lesions of arthritic mice. Moreover, arthritic clinical score was also attenuated with T0901317. Conclusion: Taken together, we show that the LXR agonist T0901317 rescues impaired atherosclerotic lesion regression in murine arthritis because of enhanced cholesterol efflux transporter expression and reduced foam cell development in atherosclerotic lesions.

10.
Cells ; 11(20)2022 10 11.
Article in English | MEDLINE | ID: mdl-36291057

ABSTRACT

Smoking is one of the most prominent addictions of the modern world, and one of the leading preventable causes of death worldwide. Although the number of tobacco smokers is believed to be at a historic low, electronic cigarette use has been on a dramatic rise over the past decades. Used as a replacement for cigarette smoking, electronic cigarettes were thought to reduce the negative effects of burning tobacco. Nonetheless, the delivery of nicotine by electronic cigarettes, the most prominent component of cigarette smoke (CS) is still delivering the same negative outcomes, albeit to a lesser extent than CS. Smoking has been shown to affect both the structural and functional aspects of major organs, including the lungs and vasculature. Although the deleterious effects of smoking on these organs individually is well-known, it is likely that the adverse effects of smoking on these organs will have long-lasting effects on the cardiovascular system. In addition, smoking has been shown to play an independent role in the homeostasis of the immune system, leading to major sequela. Both the adaptive and the innate immune system have been explored regarding CS and have been demonstrated to be altered in a way that promotes inflammatory signals, leading to an increase in autoimmune diseases, inflammatory diseases, and cancer. Although the mechanism of action of CS has not been fully understood, disease pathways have been explored in both branches of the immune system. The pathophysiologically altered immune system during smoking and its correlation with cardiovascular diseases is not fully understood. Here we highlight some of the important pathological mechanisms that involve cigarette smoking and its many components on cardiovascular disease and the immune systems in order to have a better understanding of the mechanisms at play.


Subject(s)
Cardiovascular Diseases , Cigarette Smoking , Electronic Nicotine Delivery Systems , Cigarette Smoking/adverse effects , Nicotine/adverse effects , Nicotiana , Cardiovascular Diseases/etiology , Smoking/adverse effects
13.
Front Cell Dev Biol ; 10: 795784, 2022.
Article in English | MEDLINE | ID: mdl-35309915

ABSTRACT

The body's inflammatory response involves a series of processes that are necessary for the immune system to mitigate threats from invading pathogens. Leukocyte migration is a crucial process in both homeostatic and inflammatory states. The mechanisms involved in immune cell recruitment to the site of inflammation are numerous and require several cascades and cues of activation. Immune cells have multiple origins and can be recruited from primary and secondary lymphoid, as well as reservoir organs within the body to generate an immune response to certain stimuli. However, no matter the origin, an important aspect of any inflammatory response is the web of networks that facilitates immune cell trafficking. The vasculature is an important organ for this trafficking, especially during an inflammatory response, mainly because it allows cells to migrate towards the source of insult/injury and serves as a reservoir for leukocytes and granulocytes under steady state conditions. One of the most active and vital leukocytes in the immune system's arsenal are neutrophils. Neutrophils exist under two forms in the vasculature: a marginated pool that is attached to the vessel walls, and a demarginated pool that freely circulates within the blood stream. In this review, we seek to present the current consensus on the mechanisms involved in leukocyte margination and demargination, with a focus on the role of neutrophil migration patterns during physio-pathological conditions, in particular diabetes and cardiovascular disease.

14.
Cardiovasc Res ; 118(12): 2596-2609, 2022 09 20.
Article in English | MEDLINE | ID: mdl-34534269

ABSTRACT

Neutrophils, the most abundant of all leucocytes and the first cells to arrive at the sites of sterile inflammation/injury act as a double-edged sword. On one hand, they inflict a significant collateral damage to the tissues and on the other hand, they help facilitate wound healing by a number of mechanisms. Recent studies have drastically changed the perception of neutrophils from being simple one-dimensional cells with an unrestrained mode of action to a cell type that display maturity and complex behaviour. It is now recognized that neutrophils are transcriptionally active and respond to plethora of signals by deploying a wide variety of cargo to influence the activity of other cells in the vicinity. Neutrophils can regulate macrophage behaviour, display innate immune memory, and play a major role in the resolution of inflammation in a context-dependent manner. In this review, we provide an update on the factors that regulate neutrophil production and the emerging dichotomous role of neutrophils in the context of cardiovascular diseases, particularly in atherosclerosis and the ensuing complications, myocardial infarction, and heart failure. Deciphering the complex behaviour of neutrophils during inflammation and resolution may provide novel insights and in turn facilitate the development of potential therapeutic strategies to manage cardiovascular disease.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Atherosclerosis/metabolism , Cardiovascular Diseases/metabolism , Humans , Inflammation/metabolism , Neutrophils/metabolism , Phagocytosis
15.
Antioxid Redox Signal ; 36(10-12): 652-666, 2022 04.
Article in English | MEDLINE | ID: mdl-34148367

ABSTRACT

Significance: Neutrophil behavior and function are altered by hyperglycemia associated with diabetes. Aberrant activation by hyperglycemia causes neutrophils to respond with increased production of reactive oxidative species (ROS). Excess ROS, a signature of primed neutrophils, can intracellularly induce neutrophils to undergo NETosis, flooding surrounding tissues with ROS and damage-associated molecular patterns such as S100 calcium binding proteins (S100A8/A9). The cargo associated with NETosis also attracts more immune cells to the site and signals for increased immune cell production. This inflammatory response to diabetes can accelerate other associated conditions such as atherosclerosis and thrombosis, increasing the risk of cardiovascular disease. Recent Advances: As the prevalence of diabetes continues to grow, more attention has been focused on developing effective treatment options. Currently, glucose-lowering medications and insulin injections are the most widely utilized treatments. As the disease progresses, medications are usually stacked to maintain glucose at desired target levels, but this approach often fails and does not effectively reduce cardiovascular risk, even with the latest drugs. Critical Issues: Despite advances in treatment options, diabetes remains a progressive disease as glucose lowering alone has failed to abolish the associated cardiovascular complications. Future Directions: Significant interest is being generated in developing treatments that do not solely focus on glucose control but rather mitigate glucotoxicity. Several therapies have been proposed that target cellular dysfunction downstream of hyperglycemia, such as using antioxidants to scavenge ROS, inhibiting ROS production from NOX, and suppressing neutrophil release of S100A8/A9 proteins. Antioxid. Redox Signal. 36, 652-666.


Subject(s)
Cardiovascular Diseases , Diabetes Complications , Hyperglycemia , Neutrophils , Oxidative Stress , Calgranulin A/metabolism , Cardiovascular Diseases/etiology , Diabetes Complications/metabolism , Diabetes Mellitus/metabolism , Glucose/metabolism , Humans , Hyperglycemia/complications , Hyperglycemia/metabolism , Neutrophils/metabolism , Reactive Oxygen Species/metabolism
16.
Circulation ; 145(1): 31-44, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34788059

ABSTRACT

BACKGROUND: Acute myocardial infarction (MI) results in overzealous production and infiltration of neutrophils to the ischemic heart. This is mediated in part by granulopoiesis induced by the S100A8/A9-NLRP3-IL-1ß signaling axis in injury-exposed neutrophils. Despite the transcriptional upregulation of the NLRP3 (Nod Like Receptor Family Pyrin Domain-Containing 3) inflammasome and associated signaling components in neutrophils, the serum levels of IL-1ß (interleukin-1ß), the effector molecule in granulopoiesis, were not affected by MI, suggesting that IL-1ß is not released systemically. We hypothesize that IL-1ß is released locally within the bone marrow (BM) by inflammasome-primed and reverse-migrating neutrophils. METHODS: Using a combination of time-dependent parabiosis and flow cytometry techniques, we first characterized the migration patterns of different blood cell types across the parabiotic barrier. We next induced MI in parabiotic mice by permanent ligation of the left anterior descending artery and examined the ability of injury-exposed neutrophils to permeate the parabiotic barrier and induce granulopoiesis in noninfarcted parabionts. Last, using multiple neutrophil adoptive and BM transplant studies, we studied the molecular mechanisms that govern reverse migration and retention of the primed neutrophils, IL-1ß secretion, and granulopoiesis. Cardiac function was assessed by echocardiography. RESULTS: MI promoted greater accumulation of the inflammasome-primed neutrophils in the BM. Introducing a time-dependent parabiotic barrier to the free movement of neutrophils inhibited their ability to stimulate granulopoiesis in the noninfarcted parabionts. Previous priming of the NLRP3 inflammasome is not a prerequisite, but the presence of a functional CXCR4 (C-X-C-motif chemokine receptor 4) on the primed-neutrophils and elevated serum S100A8/A9 levels are necessary for homing and retention of the reverse-migrating neutrophils. In the BM, the primed-neutrophils secrete IL-1ß through formation of gasdermin D pores and promote granulopoiesis. Pharmacological and genetic strategies aimed at the inhibition of neutrophil homing or release of IL-1ß in the BM markedly suppressed MI-induced granulopoiesis and improved cardiac function. CONCLUSIONS: Our data reveal a new paradigm of how circulatory cells establish a direct communication between organs by delivering signaling molecules (eg, IL-1ß) directly at the sites of action rather through systemic release. We suggest that this pathway may exist to limit the off-target effects of systemic IL-1ß release.


Subject(s)
Granulocytes/metabolism , Inflammasomes/metabolism , Myocardial Infarction/complications , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neutrophils/metabolism , Animals , Humans , Mice , Signal Transduction
17.
Arterioscler Thromb Vasc Biol ; 41(3): 1167-1178, 2021 03.
Article in English | MEDLINE | ID: mdl-33441028

ABSTRACT

OBJECTIVE: People with diabetes are at a significantly higher risk of cardiovascular disease, in part, due to accelerated atherosclerosis. Diabetic subjects have increased number of platelets that are activated, more reactive, and respond suboptimally to antiplatelet therapies. We hypothesized that reducing platelet numbers by inducing their premature apoptotic death would decrease atherosclerosis. Approach and Results: This was achieved by targeting the antiapoptotic protein Bcl-xL (B-cell lymphoma-extra large; which is essential for platelet viability) via distinct genetic and pharmacological approaches. In the former, we transplanted bone marrow from mice carrying the Tyr15 to Cys loss of function allele of Bcl-x (known as Bcl-xPlt20) or wild-type littermate controls into atherosclerotic-prone Ldlr+/- mice made diabetic with streptozotocin and fed a Western diet. Reduced Bcl-xL function in hematopoietic cells significantly decreased platelet numbers, exclusive of other hematologic changes. This led to a significant reduction in atherosclerotic lesion formation in Bcl-xPlt20 bone marrow transplanted Ldlr+/- mice. To assess the potential therapeutic relevance of reducing platelets in atherosclerosis, we next targeted Bcl-xL with a pharmacological strategy. This was achieved by low-dose administration of the BH3 (B-cell lymphoma-2 homology domain 3) mimetic, ABT-737 triweekly, in diabetic Apoe-/- mice for the final 6 weeks of a 12-week study. ABT-737 normalized platelet numbers along with platelet and leukocyte activation to that of nondiabetic controls, significantly reducing atherosclerosis while promoting a more stable plaque phenotype. CONCLUSIONS: These studies suggest that selectively reducing circulating platelets, by targeting Bcl-xL to promote platelet apoptosis, can reduce atherosclerosis and lower cardiovascular disease risk in diabetes. Graphic Abstract: A graphic abstract is available for this article.


Subject(s)
Atherosclerosis/blood , Atherosclerosis/complications , Blood Platelets/pathology , Diabetic Angiopathies/blood , Animals , Apoptosis/drug effects , Apoptosis/genetics , Atherosclerosis/prevention & control , Biphenyl Compounds/administration & dosage , Blood Platelets/drug effects , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/complications , Female , Humans , Leukocytes/pathology , Leukocytes/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nitrophenols/administration & dosage , Piperazines/administration & dosage , Platelet Count , Receptors, LDL/deficiency , Receptors, LDL/genetics , Risk Factors , Sulfonamides/administration & dosage
19.
Clin Transl Immunology ; 9(12): e1222, 2020.
Article in English | MEDLINE | ID: mdl-33363732

ABSTRACT

Macrophages are the first immune cells in the developing embryo and have a central role in organ development, homeostasis, immunity and repair. Over the last century, our understanding of these cells has evolved from being thought of as simple phagocytic cells to master regulators involved in governing a myriad of cellular processes. A better appreciation of macrophage biology has been matched with a clearer understanding of their diverse origins and the flexibility of their metabolic and transcriptional machinery. The understanding of the classical mononuclear phagocyte system in its original form has now been expanded to include the embryonic origin of tissue-resident macrophages. A better knowledge of the intrinsic similarities and differences between macrophages of embryonic or monocyte origin has highlighted the importance of ontogeny in macrophage dysfunction in disease. In this review, we provide an update on origin and classification of tissue macrophages, the mechanisms of macrophage specialisation and their role in health and disease. The importance of the macrophage niche in providing trophic factors and a specialised environment for macrophage differentiation and specialisation is also discussed.

20.
Front Cardiovasc Med ; 7: 570553, 2020.
Article in English | MEDLINE | ID: mdl-33195459

ABSTRACT

Clinical trials investigating whether glucose lowering treatment reduces the risk of CVD in diabetes have thus far yielded mixed results. However, this doesn't rule out the possibility of hyperglycemia playing a major causal role in promoting CVD or elevating CVD risk. In fact, lowering glucose appears to promote some beneficial long-term effects, and continuous glucose monitoring devices have revealed that postprandial spikes of hyperglycemia occur frequently, and may be an important determinant of CVD risk. It is proposed that these short, intermittent bursts of hyperglycemia may have detrimental effects on several organ systems including the vasculature and the hematopoietic system collectively contributing to the state of elevated CVD risk in diabetes. In this review, we summarize the potential mechanisms through which hyperglycemic spikes may increase atherosclerosis and how new and emerging interventions may combat this.

SELECTION OF CITATIONS
SEARCH DETAIL