Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Structure ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38810648

ABSTRACT

Influenza causes significant morbidity and mortality. As an alternative approach to current seasonal vaccines, the computationally optimized broadly reactive antigen (COBRA) platform has been previously applied to hemagglutinin (HA). This approach integrates wild-type HA sequences into a single immunogen to expand the breadth of accessible antibody epitopes. Adding to previous studies of H1, H3, and H5 COBRA HAs, we define the structural features of another H1 subtype COBRA, X6, that incorporates HA sequences from before and after the 2009 H1N1 influenza pandemic. We determined structures of this antigen alone and in complex with COBRA-specific as well as broadly reactive and functional antibodies, analyzing its antigenicity. We found that X6 possesses features representing both historic and recent H1 HA strains, enabling binding to both head- and stem-reactive antibodies. Overall, these data confirm the integrity of broadly reactive antibody epitopes of X6 and contribute to design efforts for a next-generation vaccine.

2.
Commun Biol ; 6(1): 454, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37185989

ABSTRACT

Influenza virus poses an ongoing human health threat with pandemic potential. Due to mutations in circulating strains, formulating effective vaccines remains a challenge. The use of computationally optimized broadly reactive antigen (COBRA) hemagglutinin (HA) proteins is a promising vaccine strategy to protect against a wide range of current and future influenza viruses. Though effective in preclinical studies, the mechanistic basis driving the broad reactivity of COBRA proteins remains to be elucidated. Here, we report the crystal structure of the COBRA HA termed P1 and identify antigenic and glycosylation properties that contribute to its immunogenicity. We further report the cryo-EM structure of the P1-elicited broadly neutralizing antibody 1F8 bound to COBRA P1, revealing 1F8 to recognize an atypical receptor binding site epitope via an unexpected mode of binding.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Orthomyxoviridae Infections , Humans , Hemagglutinins , Influenza A Virus, H1N1 Subtype/genetics , Antibodies, Viral , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/genetics
3.
Viruses ; 13(4)2021 03 24.
Article in English | MEDLINE | ID: mdl-33805245

ABSTRACT

Influenza virus, a highly mutable respiratory pathogen, causes significant disease nearly every year. Current vaccines are designed to protect against circulating influenza strains of a given season. However, mismatches between vaccine strains and circulating strains, as well as inferior vaccine effectiveness in immunodeficient populations, represent major obstacles. In an effort to expand the breadth of protection elicited by influenza vaccination, one of the major surface glycoproteins, hemagglutinin (HA), has been modified to develop immunogens that display conserved regions from multiple viruses or elicit a highly polyclonal antibody response to broaden protection. These approaches, which target either the head or the stalk domain of HA, or both domains, have shown promise in recent preclinical and clinical studies. Furthermore, the role of adjuvants in bolstering the robustness of the humoral response has been studied, and their effects on the vaccine-elicited antibody repertoire are currently being investigated. This review will discuss the progress made in the universal influenza vaccine field with respect to influenza A viruses from the perspectives of both antigen and adjuvant, with a focus on the elicitation of broadly neutralizing antibodies.


Subject(s)
Adjuvants, Immunologic , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A virus/immunology , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Animals , Antibodies, Viral/immunology , Clinical Trials as Topic , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Immunity, Humoral , Influenza Vaccines/genetics , Influenza, Human/immunology , Mice , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/virology , Vaccines, Virus-Like Particle/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...