Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 38(21): 6647-6652, 2022 May 31.
Article in English | MEDLINE | ID: mdl-35579556

ABSTRACT

Formation of a desirable submillimeter-scaled assembled structure of particles in the colloid is a difficult subject in colloidal chemistry. Herein, a submillimeter-scaled ordered assembled structure consisting of highly anisotropic two-dimensional plate-like particles, niobate nanosheets, was obtained through an optical manipulation technique that was assisted by a scattering-force-induced stream. A 532 nm continuous wave laser beam with a power of 400 mW was used to illuminate a liquid crystalline niobate nanosheet colloid from the bottom side of a sample cell, inducing the stream of oriented nanosheets toward the upper side of the sample cell. As a result, a 200 µm ordered assembled structure consisting of oriented nanosheets was formed. The assembled structure was also characterized by two-dimensional anisotropy, reflecting that the highly anisotropic morphologies of each nanosheet and the shape of that structure were dependent on the polarization of incident illumination. This study has revealed a new noncontact and on-demand way to obtain submillimeter-scaled ordered anisotropic colloidal assembled structures of nanosized particles such as nanosheets, contributing to fundamental materials science and expanding the utilities of nanosheets.

2.
Langmuir ; 35(16): 5568-5573, 2019 Apr 23.
Article in English | MEDLINE | ID: mdl-30942592

ABSTRACT

Although inorganic nanosheets prepared by exfoliation (delamination) of layered crystals have attracted great attention as 2D nanoparticles, in situ real space observations of exfoliated nanosheets in the colloidally dispersed state have not been conducted. In the present study, colloidally dispersed inorganic nanosheets prepared by exfoliation of layered niobate are directly observed with bright-field optical microscopy, which detects large nanosheets with lateral length larger than several micrometers. The observed nanosheets are not strictly flat but rounded, undulated, or folded in many cases. Optical trapping of nanosheets by laser radiation pressure has clarified their uneven cross-sectional shapes. Their morphology is retained under the relation between Brownian motion and optical trapping.

SELECTION OF CITATIONS
SEARCH DETAIL
...