Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Bioengineering (Basel) ; 10(2)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36829698

ABSTRACT

Over the last few years, biopolymers have attracted great interest in tissue engineering and regenerative medicine due to the great diversity of their chemical, mechanical, and physical properties for the fabrication of 3D scaffolds. This review is devoted to recent advances in synthetic and natural polymeric 3D scaffolds for bone tissue engineering (BTE) and regenerative therapies. The review comprehensively discusses the implications of biological macromolecules, structure, and composition of polymeric scaffolds used in BTE. Various approaches to fabricating 3D BTE scaffolds are discussed, including solvent casting and particle leaching, freeze-drying, thermally induced phase separation, gas foaming, electrospinning, and sol-gel techniques. Rapid prototyping technologies such as stereolithography, fused deposition modeling, selective laser sintering, and 3D bioprinting are also covered. The immunomodulatory roles of polymeric scaffolds utilized for BTE applications are discussed. In addition, the features and challenges of 3D polymer scaffolds fabricated using advanced additive manufacturing technologies (rapid prototyping) are addressed and compared to conventional subtractive manufacturing techniques. Finally, the challenges of applying scaffold-based BTE treatments in practice are discussed in-depth.

2.
ACS Omega ; 7(43): 38942-38956, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36340154

ABSTRACT

To examine the utilization of metal oxide nanoparticles (NPs) in different commercial products, this work focuses on the determination of cost-effective and scalable synthesis protocols. The solvothermal protocol is well-known as a scalable method but has recently been shown to lack economic feasibility. The mechanochemical method has recently been recognized to be a more economic and environmentally friendly substitute for the solvothermal method. In this study, zinc oxide nanoparticles (ZnO NPs) and copper oxide nanoparticles (CuO NPs) were synthesized using two (aqueous and organic) solvothermal (wet) methods and two (manual and automated) mechanochemical (dry) methods. The four methods were evaluated and compared. The automated mechanochemical method generated a significantly higher yield of ZnO NPs (82%) and CuO NPs (84%) using the least energy and time. However, the prepared ZnO NPs displayed higher cytotoxicity against Vero E6 cells when compared to that of CuO NPs. Because of their low cytotoxicity, CuO NPs synthesized via the automated mechanochemical method were selected for application onto cotton fabrics. Lower cytotoxicity was observed for CuO NPs treated fabrics with an IC50 of 562 mg/mL and ZnO treated fabrics with an IC50 at 23.93 mg/mL when the treated fabrics were tested against L929 fibroblast cells. Additionally, the cotton fabrics retained bactericidal and virucidal effects after four washes. Thus, the current study recommends the automated mechanochemical method as a cost-effective scalable approach for the synthesis of CuO NPs. The application of CuO NPs onto cotton fabrics generated washable antimicrobial face masks.

3.
RSC Adv ; 12(25): 16184-16193, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35733688

ABSTRACT

With the increase of the contagiousness rates of Coronavirus disease (COVID-19), new strategies are needed to halt virus spread. Blocking virus entry by capturing its spike (S) protein is one of the effective approaches that could help in eliminating or reducing transmission rate of viruses. Herein, we aim to develop a nanofiber-based filter for protective face masks, composed of polyacrylonitrile (PAN) nanofibers (NFs)-loaded with Angiotensin Converting Enzyme-2 (ACE-2) for capturing the spike protein of severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2) and blocking its entry. Docking simulations were performed to evaluate interactions of PAN with target proteins of both SARS-CoV-2 and Human Adenovirus type 5 (ADV-5) which was used as an in vitro model of human respiratory viruses. Scanning electron microscopy (SEM) and Fourier transformed infrared (FT-IR) spectroscopy was employed to investigate the surface morphology and to analyze the functional groups of the NFs, respectively. The mechanical properties of the electrospun NFs were investigated, according to which the tensile strengths of PAN and modified PAN NFs were 4.9 ± 1.2 GPa and 4.5 GPa. Additionally, elongations at break were 25 ± 2.5% to 24 ± 1.48% for PAN and modified PAN NFs. The tensile strength test showed good mechanical characteristics of the NFs. The ACE-2-loaded NFs were shown to be safe, with promising antiviral activity towards ADV-5. Meanwhile, a binding affinity study between the spike protein and ACE-2 was performed and the dissociation constant (K D) was found to be 1.1 nM. Accordingly, the developed antiviral filters have a potential role to stand as a base for combating various human respiratory viruses.

4.
ACS Omega ; 7(17): 14887-14896, 2022 May 03.
Article in English | MEDLINE | ID: mdl-35557678

ABSTRACT

ZnO-NPs loaded polyvinylidene fluoride (PVDF) composite nanofibers were fabricated by electrospinning and optimized using different concentrations (0, 2, and 5 wt %) of ZnO-NPs. Characterization techniques, for example, FTIR, SEM, XRD, and tensile strength analysis were performed to analyze the composite nanofibers. Molecular docking calculations were performed to evaluate the binding affinity of PVDF and ZnO@PVDF against the hexon protein of adenovirus (PDB ID: 6CGV). The cytotoxicity of tested materials was evaluated using MTT assay, and nontoxic doses subjected to antiviral evaluation against human adenovirus type-5 as a human respiratory model were analyzed using quantitative polymerase chain reaction assay. IC50 values were obtained at concentrations of 0, 2, and 5% of ZnO-loaded PVDF; however, no cytotoxic effect was detected for the nanofibers. In 5% ZnO-loaded PVDF nanofibers, both the viral entry and its replication were inhibited in both the adsorption and virucidal antiviral mechanisms, making it a potent antiviral filter/mask. Therefore, ZnO-loaded PVDF nanofiber is a potentially prototyped filter embedded in a commercial face mask for use as an antiviral mask with a pronounced potential to reduce the spreading of infectious respiratory diseases, for example, COVID-19 and its analogues.

5.
J Colloid Interface Sci ; 599: 227-244, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33945970

ABSTRACT

The current study provides a novel insight into the role of synergism of the changes in Mg2+/ Al3+ in the best catalytic activity of indol-3-yl derivatives. A series of Co-Mg-Al layered triple hydroxides (LTHs) catalysts were produced by altering the Al3+/Mg2+ ratio with respect to Co2+. The physicochemical properties of LTHs were well characterized by ICP-AES, XRD, FTIR, FE-SEM, BET, Zeta-sizer, and VSM. The results show that the sample CMA4 (Co2+:Mg2+:Al3+ 2:4:4) is an exception to the physicochemical characteristics of the produced Co-Mg-Al LTHs, which is due to the synergism between the changes in Mg2+ and Al3+. To the best of our knowledge, this is the first study to report the synthesis of indol-3-yl derivatives from indole-3-carbaldehyde using Co-Mg-Al LTHs as highly efficient heterogeneous catalysts, which is an extremely appealing path. The selectivity of the synthesis was studied by condensing various nucleophiles through the one-pot method that established superior reactivity under mild conditions. Notably, the results show that the Co-Mg-Al LTHs system exhibited an extraordinarily catalytic activity, with the highest yield (98%) being obtained under the following optimal conditions: the concentration of Co-Mg-Al LTHs = 5 mol%, 30 min., water/ethanol as solvent. Furthermore, the reusable studies exhibited that the catalysts were found to be stable and reusable for up to six cycles without substantial loss of catalytic activity. Finally, a plausible reaction mechanism of the Co-Mg-Al LTHs system for indol-3-yl derivatives was put forward according to our comprehensive analysis. Our work illuminates a cheap and flexible strategy for the synthesis of indol-3-yl derivatives using Co-Mg-Al LTHs.

6.
Materials (Basel) ; 14(4)2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33572043

ABSTRACT

Porous polymers have been synthesized by an aza-Michael addition reaction of a multi-functional acrylamide, N,N',N″,N‴-tetraacryloyltriethylenetetramine (AM4), and hexamethylene diamine (HDA) in H2O without catalyst. Reaction conditions, such as monomer concentration and reaction temperature, affected the morphology of the resulting porous structures. Connected spheres, co-continuous monolithic structures and/or isolated holes were observed on the surface of the porous polymers. These structures were formed by polymerization-induced phase separation via spinodal decomposition or highly internal phase separation. The obtained porous polymers were soft and flexible and not breakable by compression. The porous polymers adsorbed various solvents. An AM4-HDA porous polymer could be plated by Ni using an electroless plating process via catalyzation by palladium (II) acetylacetonate following reduction of Ni ions in a plating solution. The intermediate Pd-catalyzed porous polymer promoted the Suzuki-Miyaura cross coupling reaction of 4-bromoanisole and phenylboronic acid.

7.
Polymers (Basel) ; 12(9)2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32911796

ABSTRACT

Addition reactions of multi-functional amine, polyethylene imine (PEI) or diethylenetriamine (DETA), and poly(ethylene glycol) diglycidyl ether (PEGDE) or poly(ethylene glycol) diacrylate (PEGDA), have been investigated to obtain network polymers in H2O, dimethyl sulfoxide (DMSO), and ethanol (EtOH). Ring opening addition reaction of the multi-functional amine and PEGDE in H2O at room temperature or in DMSO at 90 °C using triphenylphosphine as a catalyst yielded gels. Aza-Michael addition reaction of the multi-functional amine and PEGDA in DMSO or EtOH at room temperature also yielded corresponding gels. Compression test of the gels obtained with PEI showed higher Young's modulus than those with DETA. The reactions of the multi-functional amine and low molecular weight PEGDA in EtOH under the specific conditions yielded porous polymers induced by phase separation during the network formation. The morphology of the porous polymers could be controlled by the reaction conditions, especially monomer concentration and feed ratio of the multi-functional amine to PEGDA of the reaction system. The porous structure was formed by connected spheres or a co-continuous monolithic structure. The porous polymers were unbreakable by compression, and their Young's modulus increased with the increase in the monomer concentration of the reaction systems. The porous polymers absorbed various solvents derived from high affinity between the polyethylene glycol units in the network structure and the solvents.

8.
RSC Adv ; 10(1): 60-69, 2019 Dec 20.
Article in English | MEDLINE | ID: mdl-35492514

ABSTRACT

Porous polymers have been synthesized by Michael addition reactions of multi-functional acrylate and diamine or dithiol compounds. Aza-Michael addition reaction of multi-functional acrylate, trimethylolpropane propoxylate triacrylate (TPT) and hexamethylene diamine (HDA) in dimethyl sulfoxide (DMSO) successfully yielded the porous polymer. The porous structure was characterized by connected globules or co-continuous structure, and could be controlled by the reaction conditions. Mechanical properties of the porous polymers were investigated by compression test. The porous polymers with co-continuous structure showed higher Young's modulus than those with connected globules. The porous polymer absorbed some organic solvents, especially CHCl3. The porous polymer as prepared in DMSO state showed coloring induced by Christiansen filter effect depending on the reaction time and observation temperature. The thio-Michael addition reaction of TPT and 1,6-hexanedithiol (HDT) in DMSO using different base catalysts also yielded the porous polymer. The porous structure could be controlled by the catalysts amount when the reaction was initiated by a photo-base generator as the base catalyst. The present reaction systems make it possible to synthesize the porous polymers with simple process without phase separator.

9.
Chem Commun (Camb) ; 53(60): 8431-8434, 2017 Jul 25.
Article in English | MEDLINE | ID: mdl-28702520

ABSTRACT

An effective photo-induced ß-elimination of an alcohol leading to a vinyl compound is introduced for the first time. 9-Fluorenylmethanol was irradiated in a solution using a Xe lamp and was efficiently converted to dibenzofulvene (DBF) (9-methylenefluorene) in the absence of base which is necessary in the corresponding ground-state reaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...