Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Plant J ; 119(1): 525-539, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38693717

ABSTRACT

Regulation of gene expression in eukaryotes is controlled by cis-regulatory modules (CRMs). A major class of CRMs are enhancers which are composed of activating cis-regulatory elements (CREs) responsible for upregulating transcription. To date, most enhancers and activating CREs have been studied in angiosperms; in contrast, our knowledge about these key regulators of gene expression in green algae is limited. In this study, we aimed at characterizing putative activating CREs/CRMs from the histone genes of the unicellular model alga Chlamydomonas reinhardtii. To test the activity of four candidates, reporter constructs consisting of a tetramerized CRE, an established promoter, and a gene for the mCerulean3 fluorescent protein were incorporated into the nuclear genome of C. reinhardtii, and their activity was quantified by flow cytometry. Two tested candidates, Eupstr and Ehist cons, significantly upregulated gene expression and were characterized in detail. Eupstr, which originates from highly expressed genes of C. reinhardtii, is an orientation-independent CRE capable of activating both the RBCS2 and ß2-tubulin promoters. Ehist cons, which is a CRM from histone genes of angiosperms, upregulates the ß2-tubulin promoter in C. reinhardtii over a distance of at least 1.5 kb. The octamer motif present in Ehist cons was identified in C. reinhardtii and the related green algae Chlamydomonas incerta, Chlamydomonas schloesseri, and Edaphochlamys debaryana, demonstrating its high evolutionary conservation. The results of this investigation expand our knowledge about the regulation of gene expression in green algae. Furthermore, the characterized activating CREs/CRMs can be applied as valuable genetic tools.


Subject(s)
Chlamydomonas reinhardtii , Histones , Promoter Regions, Genetic , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Histones/metabolism , Histones/genetics , Promoter Regions, Genetic/genetics , Gene Expression Regulation, Plant , Regulatory Sequences, Nucleic Acid/genetics
2.
Proc Natl Acad Sci U S A ; 120(26): e2221549120, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37339230

ABSTRACT

Cytochromes P450 (CYPs) are heme-thiolate monooxygenases that prototypically catalyze the insertion of oxygen into unactivated C-H bonds but are capable of mediating more complex reactions. One of the most remarked-upon alternative reactions occurs during biosynthesis of the gibberellin A (GA) phytohormones, involving hydrocarbon ring contraction with coupled aldehyde extrusion of ent-kaurenoic acid to form the first gibberellin intermediate. While the unusual nature of this reaction has long been noted, its mechanistic basis has remained opaque. Building on identification of the relevant CYP114 from bacterial GA biosynthesis, detailed structure-function studies are reported here, including development of in vitro assays as well as crystallographic analyses both in the absence and presence of substrate. These structures provided insight into enzymatic catalysis of this unusual reaction, as exemplified by identification of a key role for the "missing" acid from an otherwise highly conserved acid-alcohol pair of residues. Notably, the results demonstrate that ring contraction requires dual factors, both the use of a dedicated ferredoxin and absence of the otherwise conserved acidic residue, with exclusion of either limiting turnover to just the initiating and more straightforward hydroxylation. The results provide detailed insight into the enzymatic structure-function relationships underlying this fascinating reaction and support the use of a semipinacol mechanism for the unusual ring contraction reaction.


Subject(s)
Gibberellins , Plant Growth Regulators , Cytochrome P-450 Enzyme System/chemistry , Bacteria , Catalysis
3.
Mol Plant Microbe Interact ; 36(10): 647-655, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37227226

ABSTRACT

In recent years Acidovorax avenae subsp. avenae was identified as a major cause of bacterial etiolation and decline (BED) in turfgrasses and has become a growing economical concern for the turfgrass industry. The symptoms of BED resemble those of "bakanae," or foolish seedling disease, of rice (Oryzae sativa), in which the gibberellins produced by the infecting fungus, Fusarium fujikuroi, contribute to the symptom development. Additionally, an operon coding for the enzymes necessary for bacterial gibberellin production was recently characterized in plant-pathogenic bacteria belonging to the γ-proteobacteria. We therefore investigated whether this gibberellin operon might be present in A. avenae subsp. avenae. A homolog of the operon has been identified in two turfgrass-infecting A. avenae subsp. avenae phylogenetic groups but not in closely related phylogenetic groups or strains infecting other plants. Moreover, even within these two phylogenetic groups, the operon presence is not uniform. For that reason, the functionality of the operon was examined in one strain of each turfgrass-infecting phylogenetic group (A. avenae subsp. avenae strains KL3 and MD5). All nine operon genes were functionally characterized through heterologous expression in Escherichia coli and enzymatic activities were analyzed by liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry. All enzymes were functional in both investigated strains, thus demonstrating the ability of phytopathogenic ß-proteobacteria to produce biologically active GA4. This additional gibberellin produced by A. avenae subsp. avenae could disrupt phytohormonal balance and be a leading factor contributing to the pathogenicity on turf grasses. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Comamonadaceae , Gibberellins , Phylogeny , Poaceae , Comamonadaceae/genetics , Plants
4.
Front Plant Sci ; 13: 892907, 2022.
Article in English | MEDLINE | ID: mdl-35599904

ABSTRACT

Terpenes and phenolics are important constitutive and inducible conifer defenses against bark beetles and their associated fungi. In this study, the inducible defenses of mature Norway spruce (Picea abies) trees with different histories of attack by the spruce bark beetle, Ips typographus were tested by inoculation with the I. typographus-associated fungus Endoconidiophora polonica. We compared trees that had been under previous attack with those under current attack and those that had no record of attack. After fungal inoculation, the concentrations of mono-, sesqui-, and diterpenes in bark increased 3- to 9-fold. For the phenolics, the flavan-3-ols, catechin, and gallocatechin, increased significantly by 2- and 5-fold, respectively, while other flavonoids and stilbenes did not. The magnitudes of these inductions were not influenced by prior bark beetle attack history for all the major compounds and compound classes measured. Before fungal inoculation, the total amounts of monoterpenes, diterpenes, and phenolics (constitutive defenses) were greater in trees that had been previously attacked compared to those under current attack, possibly a result of previous induction. The transcript levels of many genes involved in terpene formation (isoprenyl diphosphate synthases and terpene synthases) and phenolic formation (chalcone synthases) were significantly enhanced by fungal inoculation suggesting de novo biosynthesis. Similar inductions were found for the enzymatic activity of isoprenyl diphosphate synthases and the concentration of their prenyl diphosphate products after fungal inoculation. Quantification of defense hormones revealed a significant induction of the jasmonate pathway, but not the salicylic acid pathway after fungal inoculation. Our data highlight the coordinated induction of terpenes and phenolics in spruce upon infection by E. polonica, a fungal associate of the bark beetle I. typographus, but provide no evidence for the priming of these defense responses by prior beetle attack.

5.
Appl Microbiol Biotechnol ; 106(9-10): 3539-3554, 2022 May.
Article in English | MEDLINE | ID: mdl-35511277

ABSTRACT

As an alternative to chemical building blocks derived from algal biomass, the excretion of glycolate has been proposed. This process has been observed in green algae such as Chlamydomonas reinhardtii as a product of the photorespiratory pathway. Photorespiration generally occurs at low CO2 and high O2 concentrations, through the key enzyme RubisCO initiating the pathway via oxygenation of 1.5-ribulose-bisphosphate. In wild-type strains, photorespiration is usually suppressed in favour of carboxylation due to the cellular carbon concentrating mechanisms (CCMs) controlling the internal CO2 concentration. Additionally, newly produced glycolate is directly metabolized in the C2 cycle. Therefore, both the CCMs and the C2 cycle are the key elements which limit the glycolate production in wild-type cells. Using conventional crossing techniques, we have developed Chlamydomonas reinhardtii double mutants deficient in these two key pathways to direct carbon flux to glycolate excretion. Under aeration with ambient air, the double mutant D6 showed a significant and stable glycolate production when compared to the non-producing wild type. Interestingly, this mutant can act as a carbon sink by fixing atmospheric CO2 into glycolate without requiring any additional CO2 supply. Thus, the double-mutant strain D6 can be used as a photocatalyst to produce chemical building blocks and as a future platform for algal-based biotechnology. KEY POINTS: • Chlamydomonas reinhardtii cia5 gyd double mutants were developed by sexual crossing • The double mutation eliminates the need for an inhibitor in glycolate production • The strain D6 produces significant amounts of glycolate with ambient air only.


Subject(s)
Chlamydomonas reinhardtii , Biotechnology , Carbon/metabolism , Carbon Dioxide/metabolism , Chlamydomonas reinhardtii/metabolism , Glycolates/metabolism , Photosynthesis , Plants/metabolism
6.
mSphere ; 5(3)2020 06 03.
Article in English | MEDLINE | ID: mdl-32493722

ABSTRACT

Gibberellin (GA) phytohormones are ubiquitous regulators of growth and developmental processes in vascular plants. The convergent evolution of GA production by plant-associated bacteria, including both symbiotic nitrogen-fixing rhizobia and phytopathogens, suggests that manipulation of GA signaling is a powerful mechanism for microbes to gain an advantage in these interactions. Although orthologous operons encode GA biosynthetic enzymes in both rhizobia and phytopathogens, notable genetic heterogeneity and scattered operon distribution in these lineages, including loss of the gene for the final biosynthetic step in most rhizobia, suggest varied functions for GA in these distinct plant-microbe interactions. Therefore, deciphering GA operon evolutionary history should provide crucial evidence toward understanding the distinct biological roles for bacterial GA production. To further establish the genetic composition of the GA operon, two operon-associated genes that exhibit limited distribution among rhizobia were biochemically characterized, verifying their roles in GA biosynthesis. This enabled employment of a maximum parsimony ancestral gene block reconstruction algorithm to characterize loss, gain, and horizontal gene transfer (HGT) of GA operon genes within alphaproteobacterial rhizobia, which exhibit the most heterogeneity among the bacteria containing this biosynthetic gene cluster. Collectively, this evolutionary analysis reveals a complex history for HGT of the entire GA operon, as well as the individual genes therein, and ultimately provides a basis for linking genetic content to bacterial GA functions in diverse plant-microbe interactions, including insight into the subtleties of the coevolving molecular interactions between rhizobia and their leguminous host plants.IMPORTANCE While production of phytohormones by plant-associated microbes has long been appreciated, identification of the gibberellin (GA) biosynthetic operon in plant-associated bacteria has revealed surprising genetic heterogeneity. Notably, this heterogeneity seems to be associated with the lifestyle of the microbe; while the GA operon in phytopathogenic bacteria does not seem to vary to any significant degree, thus enabling production of bioactive GA, symbiotic rhizobia exhibit a number of GA operon gene loss and gain events. This suggests that a unique set of selective pressures are exerted on this biosynthetic gene cluster in rhizobia. Through analysis of the evolutionary history of the GA operon in alphaproteobacterial rhizobia, which display substantial diversity in their GA operon structure and gene content, we provide insight into the effect of lifestyle and host interactions on the production of this phytohormone by plant-associated bacteria.


Subject(s)
Bacteria/genetics , Bacteria/metabolism , Evolution, Molecular , Gibberellins/metabolism , Operon , Biosynthetic Pathways , Multigene Family , Plant Growth Regulators/biosynthesis , Plants/microbiology , Symbiosis
9.
Molecules ; 24(13)2019 Jun 29.
Article in English | MEDLINE | ID: mdl-31261889

ABSTRACT

In response to insect herbivory, poplar releases a blend of volatiles that plays important roles in plant defense. Although the volatile bouquet is highly complex and comprises several classes of compounds, it is dominated by mono- and sesquiterpenes. The most common precursors for mono- and sesquiterpenes, geranyl diphosphate (GPP) and (E,E)-farnesyl diphosphate (FPP), respectively, are in general produced by homodimeric or heterodimeric trans-isopentenyl diphosphate synthases (trans-IDSs) that belong to the family of prenyltransferases. To understand the molecular basis of herbivory-induced terpene formation in poplar, we investigated the trans-IDS gene family in the western balsam poplar Populus trichocarpa. Sequence comparisons suggested that this species possesses a single FPP synthase gene (PtFPPS1) and four genes encoding two large subunits (PtGPPS1.LSU and PtGPPS2.LSU) and two small subunits (PtGPPS.SSU1 and PtGPPS.SSU2) of GPP synthases. Transcript accumulation of PtGPPS1.LSU and PtGPPS.SSU1 was significantly upregulated upon leaf herbivory, while the expression of PtFPPS1, PtGPPS2.LSU, and PtGPPS.SSU2 was not influenced by the herbivore treatment. Heterologous expression and biochemical characterization of recombinant PtFPPS1, PtGPPS1.LSU, and PtGPPS2.LSU confirmed their respective IDS activities. Recombinant PtGPPS.SSU1 and PtGPPS.SSU2, however, had no enzymatic activity on their own, but PtGPPS.SSU1 enhanced the GPP synthase activities of PtGPPS1.LSU and PtGPPS2.LSU in vitro. Altogether, our data suggest that PtGPPS1.LSU and PtGPPS2.LSU in combination with PtGPPS.SSU1 may provide the substrate for herbivory-induced monoterpene formation in P. trichocarpa. The sole FPP synthase PtFPPS1 likely produces FPP for both primary and specialized metabolism in this plant species.


Subject(s)
Dimethylallyltranstransferase/genetics , Insecta/physiology , Populus/chemistry , Animals , Dimethylallyltranstransferase/metabolism , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Herbivory , Plant Proteins/genetics , Plant Proteins/metabolism , Populus/enzymology , Populus/genetics , Terpenes/chemistry , Up-Regulation , Volatile Organic Compounds/chemistry
10.
Plant Physiol ; 180(2): 693-694, 2019 06.
Article in English | MEDLINE | ID: mdl-31160522
14.
Planta ; 249(1): 9-20, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30467632

ABSTRACT

MAIN CONCLUSION: This review summarizes the recent developments in the study of isoprenyl diphosphate synthases with an emphasis on analytical techniques, product length determination, and the physiological consequences of manipulating expression in planta. The highly diverse structures of all terpenes are synthesized from the five carbon precursors dimethylallyl diphosphate and a varying number of isopentenyl diphosphate units through 1'-4 alkylation reactions. These elongation reactions are catalyzed by isoprenyl diphosphate synthases (IDS). IDS are classified depending on the configuration of the ensuing double bond as trans- and cis-IDS. In addition, IDS are further stratified by the length of their prenyl diphosphate product. This review discusses analytical techniques for the determination of product length and the factors that control product length, with an emphasis on alternative mechanisms. With recent advances in analytics, multiple IDS of Arabidopsis thaliana have been recently reinvestigated and demonstrated to yield products of different lengths than originally reported, which is summarized here. As IDS dictate prenyl diphosphate length and thereby which class of terpenes is ultimately produced, another focus of this review is the impact that altering IDS expression has on terpenoid natural product accumulation. Finally, recent findings regarding the ability of a few IDS to not catalyze 1'-4 alkylation reactions, but instead produce irregular products, with unusual connectivity, or act as terpene synthases, are also discussed.


Subject(s)
Alkyl and Aryl Transferases/metabolism , Arabidopsis/metabolism , Terpenes/metabolism
15.
Front Microbiol ; 9: 2916, 2018.
Article in English | MEDLINE | ID: mdl-30546353

ABSTRACT

The ability of plant-associated microbes to produce gibberellin A (GA) phytohormones was first described for the fungal rice pathogen Gibberella fujikuroi in the 1930s. Recently the capacity to produce GAs was shown for several bacteria, including symbiotic alpha-proteobacteria (α-rhizobia) and gamma-proteobacteria phytopathogens. All necessary enzymes for GA production are encoded by a conserved operon, which appears to have undergone horizontal transfer between and within these two phylogenetic classes of bacteria. Here the operon was shown to be present and functional in a third class, the beta-proteobacteria, where it is found in several symbionts (ß-rhizobia). Conservation of function was examined by biochemical characterization of the enzymes encoded by the operon from Paraburkholderia mimosarum LMG 23256T. Despite the in-frame gene fusion between the short-chain alcohol dehydrogenase/reductase and ferredoxin, the encoded enzymes exhibited the expected activity. Intriguingly, together these can only produce GA9, the immediate precursor to the bioactive GA4, as the cytochrome P450 (CYP115) that catalyzes the final hydroxylation reaction is missing, similar to most α-rhizobia. However, phylogenetic analysis indicates that the operon from ß-rhizobia is more closely related to examples from gamma-proteobacteria, which almost invariably have CYP115 and, hence, can produce bioactive GA4. This indicates not only that ß-rhizobia acquired the operon by horizontal gene transfer from gamma-proteobacteria, rather than α-rhizobia, but also that they independently lost CYP115 in parallel to the α-rhizobia, further hinting at the possibility of detrimental effects for the production of bioactive GA4 by these symbionts.

16.
Molecules ; 23(10)2018 Oct 06.
Article in English | MEDLINE | ID: mdl-30301210

ABSTRACT

Isoprenyl chains are found in many important metabolites. These are derived from precursors of the appropriate length produced by isoprenyl diphosphate synthases (IDSs). The human pathogen Mycobacterium tuberculosis makes various isoprenoids/terpenoids, with important roles in their biosynthesis played by two closely related IDSs, encoded by grcC1 (Rv0562) and grcC2 (Rv0989c), with Rv0989c generating the 10-carbon precursor (E)-geranyl diphosphate (GPP), and Rv0562 the 20-carbon precursor (E,E,E)-geranylgeranyl diphosphate (GGPP). Intriguingly, while Rv0562 contains the prototypical trans-IDS first and second aspartate-rich (DDxxD) motifs (FARM and SARM, respectively), Rv0989c uniquely contains arginine in place of the second Asp in the FARM and first Asp in the SARM. Here site-directed mutagenesis of the corresponding residues in both Rv0562 and Rv0989c reveals that these play a role in determination of product chain length. Specifically, substitution of Asp for the Arg in the FARM and SARM of Rv0989c leads to increased production of the longer 15-carbon farnesyl diphosphate (FPP), while substitution of Arg for the corresponding Asp in Rv0562 leads to increased release of shorter products, both FPP and GPP. Accordingly, while the primary role of the FARM and SARM is known to be chelation of the divalent magnesium ion co-factors that assist substrate binding and catalysis, the Arg substitutions found in Rv0989c seem to provide a novel means by which product chain length is moderated, at least in these M. tuberculosis IDSs.


Subject(s)
Arginine/chemistry , Aspartic Acid/genetics , Geranyltranstransferase/genetics , Mycobacterium tuberculosis/enzymology , Amino Acid Motifs/genetics , Amino Acid Sequence/genetics , Arginine/genetics , Aspartic Acid/chemistry , Diphosphates/chemistry , Diterpenes/chemistry , Geranyltranstransferase/chemistry , Humans , Mutagenesis, Site-Directed , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/pathogenicity , Polyisoprenyl Phosphates/chemistry , Sesquiterpenes/chemistry , Terpenes/chemistry
18.
Biochem J ; 475(13): 2167-2177, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29875256

ABSTRACT

Biosynthesis of the gibberellin A (GA) plant hormones evolved independently in plant-associated fungi and bacteria. While the relevant enzymes have distinct evolutionary origins, the pathways proceed via highly similar reactions. One particularly complex transformation involves combined demethylation and γ-lactone ring formation, catalyzed in bacteria by the cytochrome P450 CYP112 in three individual steps, which involves large structural changes in the transition from substrate to product, with further divergence in the recently demonstrated use of two separate mechanistic routes. Here, the substrate specificity of the isozyme from Erwinia tracheiphila, EtCYP112, was probed via UV-Vis spectral binding studies and activity assays with alternate substrates from the GA biosynthetic pathway. EtCYP112 tightly binds its native substrate GA12 and reaction intermediates GA15 and GA24, as well as the methylated derivatives of GA12 and GA15 It, however, only poorly binds methylated GA24, its GA9 final product and the C-20 carboxylate side product GA25 These distinct affinities are consistent with the known reactivity of EtCYP112. However, while it binds to the immediately preceding pathway metabolite GA12-aldehyde and even earlier oxygenated ent-kaurene precursors, EtCYP112 only reacts with GA12-aldehyde and not the earlier ent-kaurene-derived metabolites. Even with GA12-aldehyde conversion is limited to the first two steps, and the full combined demethylation and γ-lactone ring-forming transformation is not catalyzed. Thus, CYP112 has evolved specificity at the catalytic rather than substrate-binding level to enable its role in GA biosynthesis.


Subject(s)
Bacterial Proteins , Cytochrome P-450 Enzyme System , Erwinia/enzymology , Sesquiterpenes , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/metabolism , Sesquiterpenes/chemistry , Sesquiterpenes/metabolism , Substrate Specificity
19.
Plant Physiol ; 176(4): 2588-2589, 2018 04.
Article in English | MEDLINE | ID: mdl-29610247
20.
Angew Chem Int Ed Engl ; 57(21): 6082-6085, 2018 05 22.
Article in English | MEDLINE | ID: mdl-29517843

ABSTRACT

Biosynthesis of the gibberellin (GA) plant hormones evolved independently in plants and microbes, but the pathways proceed by similar transformations. The combined demethylation and γ-lactone ring forming transformation is of significant mechanistic interest, yet remains unclear. The relevant CYP112 from bacteria was probed by activity assays and 18 O2 -labeling experiments. Notably, the ability of tert-butyl hydroperoxide to drive this transformation indicates use of the ferryl-oxo (Compound I) from the CYP catalytic cycle for this reaction. Together with the confirmed loss of C20 as CO2 , this necessitates two catalytic cycles for carbon-carbon bond scission and γ-lactone formation. The ability of CYP112 to hydroxylate the δ-lactone form of GA15 , shown by the labeling studies, is consistent with the implied use of a further oxygenated heterocycle in the final conversion of GA24 into GA9 , with the partial labeling of GA9 , thus demonstrating that CYP112 partitions its reactants between two diverging mechanisms.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Erwinia/chemistry , Gibberellins/biosynthesis , Lactones/metabolism , Biocatalysis , Cytochrome P-450 Enzyme System/chemistry , Demethylation , Erwinia/metabolism , Gibberellins/chemistry , Lactones/chemistry , Molecular Conformation
SELECTION OF CITATIONS
SEARCH DETAIL