Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Publication year range
1.
Environ Technol ; 44(9): 1265-1286, 2023 Apr.
Article in English | MEDLINE | ID: mdl-34709981

ABSTRACT

This study evaluated the adsorption and enzymatic degradation of azo dyes when using SMS. The laccase present in the SMS was characterised, and the maximum activity was obtained at pH 2, a temperature of 45°C, a Michaelis-Menten constant (Km) of 0.264 mM, and a maximum reaction rate (Vmax) of 117.95 µmol L-1 min-1. The presence of NaCl at 5 mM inhibited enzyme activity while no inhibition was observed by Na2SO4, typically found in textile wastewater. The maximum dye adsorption (57.22%) was achieved at pH 8.0, 25°C, and 100 g L-1 of SMS while the maximum enzymatic degradation (14.18%) was obtained under the same conditions, except at pH 4.0. The enzymes laccase, lignin peroxidase, and manganese peroxidase trapped in the SMS resulted in higher dye discolouration when compared to that extracted with aqueous solution, meaning that SMS has strong adsorption capacity and is a natural immobilisation matrix, which improves the enzymatic degradation of the dyes. Thus, SMS can be used in the treatment of textile effluents for dye removal by simultaneous mechanisms of adsorption and enzymatic degradation, with reduction of environmental impacts for SMS disposal and reduction of the costs associated with commercial enzymes and adsorbents.


Subject(s)
Agaricales , Azo Compounds , Water Pollutants, Chemical , Adsorption , Agaricales/metabolism , Biodegradation, Environmental , Coloring Agents , Laccase , Textile Industry , Textiles , Water Pollutants, Chemical/metabolism , Water Purification
2.
J Environ Manage ; 304: 114322, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35021594

ABSTRACT

Textile dyeing processes are known for their negative environmental impacts due to the production of aqueous effluents containing toxic dyes. Therefore, new wastewater treatment processes need to be developed to treat such effluents, including Liquid-Liquid Extraction (LLE) process using Ionic Liquids (IL). This work aimed to evaluate the application of the hydrophobic IL trihexyltetradecylphosphonium decanoate to extract black, navy, and royal reactive dyes from water and evaluate the toxicological aspects of the resulting water stream. We investigated the effect of selected parameters, such as pH (2-12), temperature (20-50 °C), salt effects, dye concentration (0.5-50 mg/L), and phase volume ratio (900-9000) on the dye extraction. The results showed extraction yields as high as 97% for the three dyes and an extraction capacity of approximately 300 mg/g for black and navy dyes and 400 mg/g for royal. The toxicity tests involved Lactuca sativa, Triticum aestivium L, and Daphnia magna as bioindicators. The difference between the toxicity of the dye solutions before and after extraction was not statistically significant when L. sativa and Triticum aestivum L were used as bioindicators. However, the extracted solution showed increased toxicity towards D. magna due to traces of IL. Overall, the IL has a high extraction capacity for the black, navy, and royal dyes. Nevertheless, further studies on LLE associated with other processes must be carried out to reduce the risk linked to the toxicity of IL transferred to the water.


Subject(s)
Ionic Liquids , Water Pollutants, Chemical , Animals , Coloring Agents/toxicity , Daphnia , Textile Industry , Textiles , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
3.
Environ Technol ; 43(4): 478-488, 2022 Jan.
Article in English | MEDLINE | ID: mdl-32623968

ABSTRACT

Polyacrylonitrile membranes (PAN) have high stability against chemical agents, making them suitable for a wide range of applications as such Ultrafiltration processes. Ultrafiltration membranes composed of PAN/Superfine powder activated carbon (S-PAC) mixtures can be a good research route, aiming the development of a new separation processes for water treatment. The association of materials to form a single product can have technological and economic advantages in separation processes. In this study, S-PAC impregnated into PAN membranes were prepared, characterized and used, as a case study, to remove diclofenac (DCF) from water. The membranes (PAN/S-PAC) were synthesized with different concentrations of S-PAC (0.2, 0.6, 1.0, 3.0 and 5.0 wt%) by a phase inversion process. The results of the TEM characterizations of the S-PAC indicated the presence of micro and nanoparticles (∼10 nm) and tending to form micrometric clusters. The infrared spectra of the membranes were characteristic of PAN; however, vibrational bands attributed to the S-PAC spectrum were also observed, which indicated an interaction between the materials. The case study showed an increase in the water flux and in the DCF rejection efficiency, for composite membranes (PAN/S-PAC) with higher concentration of S-PAC. The results of static adsorption tests indicated that the mechanism of DCF rejection occurred predominantly by adsorption. There were indications that the PAN/S-PAC membranes formed a composite material and the PAN/S-PAC (3.0) presented the best study composition given the results. Although the research is in its initial phase, the results indicated that the composition can improve many water treatment systems.


Subject(s)
Water Pollutants, Chemical , Water Purification , Acrylic Resins , Adsorption , Charcoal , Diclofenac , Membranes, Artificial , Powders , Ultrafiltration
4.
J Hazard Mater ; 398: 122893, 2020 11 05.
Article in English | MEDLINE | ID: mdl-33027875

ABSTRACT

This paper comprises several assays aiming to identify the basis for the bioremediation of mine-impacted water (MIW). To do so, the conditions for build anoxic microcosms for treating this effluent were varied, containing MIW, and a source of chitin, to biostimulate sulfate-reducing bacteria (SRB). The chitin sources were: commercial chitin (CHIT) and shrimp shell (SS), which in addition to chitin, contains CaCO3, and proteins in its composition. The CHIT assays were not successful in sulfate-reduction, even when the pH was increased with CaCO3. However, in all SS assays the SRB development was successful (85% sulfate removal for assay 3), including the metal-free (MF-SS) assay (75% for assay 5). High-throughput sequencing analysis revealed the structure of bacterial community in the SS assay: the most abundant genera were Clostridium and Klebsiella, both fermentative and chitinase producers; a few SRB from the genera Desulfovibrio and Desulfosporosinus were also detected. In the MF-SS assay, Desulfovibrio genuswas detected but Comamonas was dominant. It could be deduced that SS is a suitable substrate for SRB development, but CHIT is not. The sulfate-reduction process was provided by the cooperation between fermentative/chitinase-producer bacteria together with SRB, which leads to efficient MIW treatment, removing sulfate and metallic ions.


Subject(s)
Desulfovibrio , Water Pollutants, Chemical , Animals , Bacteria/genetics , Coal , Desulfovibrio/genetics , Sulfates , Water
5.
Environ Sci Pollut Res Int ; 27(31): 39572-39583, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32651784

ABSTRACT

This work aimed to remove sulfate and acidity from mine-impacted water (MIW) via electrocoagulation (EC), a technique which stands as an advanced alternative to chemical coagulation in pollutant removal from wastewaters. The multiple electrochemical reactions occurring in the aluminum anode and the stainless steel cathode surfaces can form unstable flakes of metal hydroxysulfate complexes, causing coagulation, flocculation, and floatation; or, adsorption of sulfate on sorbents originated from the electrochemical process can occur, depending on pH value. Batch experiments in the continuous mode of exposition using different current densities (35, 50, and 65 A m-2) were tested, and a statistical difference between their sulfate removals was detected. Furthermore, the intermittent mode of exposure was also tested by performing a 22-factorial design to verify the combination with different current densities, concluding that better efficiencies of sulfate removal were obtained in the continuous mode of exposition, even with lower current densities. After 5 h of electrocoagulation, sulfate could be removed from MIW with a mean efficiency of 70.95% (in continuous mode of exposition and 65 A m-2 current density), and this sulfate removal follows probable third-order decay kinetics in accordance with the quick drop in sulfate concentration until 3 h of exposure time, remaining virtually constant at longer times. Graphical abstract.


Subject(s)
Water Pollutants, Chemical , Water Purification , Aluminum , Electrocoagulation , Electrodes , Hydrogen-Ion Concentration , Kinetics , Sulfates , Water
6.
Eng. sanit. ambient ; 24(1): 33-43, jan.-fev. 2019. tab, graf
Article in Portuguese | LILACS-Express | LILACS | ID: biblio-1001943

ABSTRACT

RESUMO Neste trabalho foi avaliado o processo foto-Fenton solar mediado por ferrioxalato como tratamento primário de um efluente têxtil bruto (E1) e como um processo de polimento, após processo de lodos ativados (E2). Por um ano, ao menos uma vez por mês, a eficiência de descoloração e o comportamento dos sólidos foram avaliados sob condições naturais de radiação, temperatura e características dos efluentes. As condições operacionais foram as seguintes: 50 mg L-1 de ferro, pH 5, 525 mg L-1 de H2O2, administrados em dosagens decrescentes. O oxalato foi adicionado na razão molar de 1:3 [Fe+3:(C2O4)-2]. A descoloração máxima de E1 foi de 67% para intensidade de radiação de 690 W m-2; já a de E2 foi de 95% para intensidade de 620 W m-2. Houve considerável aumento na turbidez e nos sólidos suspensos em função da precipitação do ferro e de sua ação coagulante. A degradação do complexante durante o processo no E2 em dias ensolarados provocou elevada sedimentabilidade dos sólidos do efluente final, resultando em um sobrenadante clarificado, o que não ocorreu em dias nublados.


ABSTRACT This work evaluates the solar photo-Fenton process mediated by ferrioxalate as a primary treatment of raw textile effluent (E1) and as a polishing step, after active sludge process (E2). For a year, at least once a month, the color removal's efficiency and solids' behavior in the oxidative process treatment were analyze under natural conditions of light, temperature and effluents characteristics. The operational parameters values were: 50 mg L-1 iron, pH 5, 525 mg L-1 H2O2, introduced in decreasing doses. The oxalate was added at the molar ratio of 1:3 [Fe+3:(C2O4)-2]. The color removal of E1 was 60% for 690 W m-2 of radiation intensity and 95% for 620 W m-2 intensity to E2. Considerable increases were observed in turbidity and suspended solids due to the iron precipitation and the consequent coagulant action. In sunny days, the complex degradation in E2 resulted in high settle ability of solids in the final effluent, resulting in a clear supernatant. This has not happened in cloudy days.

7.
Environ Technol ; 40(6): 793-806, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29166831

ABSTRACT

This study investigates the effects of pH, H2O2 concentration and reaction time of the UV/H2O2 photochemical process on the removal of organic matter and ammonia from biologically pre-treated landfill leachates in anaerobic stabilization ponds. The results show that the concentration of H2O2 and the initial pH are significant factors, with no significant interaction between them. A pH of 3 is the optimum value for the UV/H2O2 process for the removal of organic matter, resulting in 51.63% chemical oxygen demand (COD) removal in addition to the removal of aromatic compounds. The N-NH3 removal showed little variation between pH values of 1, 5, 7, 11 and 13; the removal was on the order of 16.43 ± 2.00%. The consumption of H2O2 was elevated at pH 9, 11 and 13; at these pH values, the average removal was 94.56 ± 0.43%, compared to 43.07% at pH 3. First-order polynomial models and reaction times on the order of 15 min are sufficient for optimization studies and for evaluation of the effects of the studied parameters. The results of this study support the optimization of the UV/H2O2 process for the removal of organic matter and ammonia from landfill leachates.


Subject(s)
Water Pollutants, Chemical , Biological Oxygen Demand Analysis , Hydrogen Peroxide , Nitrogen , Organic Chemicals , Oxidation-Reduction
8.
Environ Technol ; 34(1-4): 275-82, 2013.
Article in English | MEDLINE | ID: mdl-23530341

ABSTRACT

In this work, an adsorbent coal was characterized and its sorption properties for the removal of iron and manganese from aqueous solutions were determined. Energy dispersive X-ray (EDX) analysis and X-ray diffraction (XRD) identified the presence of quartz, magnetite and manganese oxide in the adsorbent coal. The results of the adsorption isotherms verified the adsorption of iron and manganese by adsorbent coal showing a linear behaviour and indicated that chemisorption and physisorption occurred. The kinetic results were best adjusted to the pseudo-second order model with a 0.999 correlation coefficient. The results showed that the adsorbent coal could be used efficiently for the removal of iron and manganese from aqueous solutions.


Subject(s)
Coal , Iron/isolation & purification , Manganese/isolation & purification , Water Pollutants, Chemical/isolation & purification , Water Pollution, Chemical/prevention & control , Adsorption , Kinetics , Thermodynamics
9.
Environ Technol ; 33(15-16): 1867-74, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22439575

ABSTRACT

This study has investigated the reduction in coloured substances and toxic compounds present in textile industry effluent by the use of an advanced oxidation process using hydrogen peroxide (H2O2) as oxidant, activated by ultraviolet radiation. The investigation was carried out on industrial effluents, both raw and after biological treatment, using different concentrations of H2O2 in a photochemical reactor equipped with a 250 W high-pressure mercury vapour lamp. The results showed that after 60 minutes of ultraviolet irradiation a H2O2 concentration of 500 mg L(-1) was able to remove approximately 73% of the coloured compounds present in raw effluent and 96% of those present in biologically treated effluent. Additionally, post-treatment toxicity tests performed using the microcrustacean Daphnia magna showed a significant effective reduction in the acute toxicity of the raw effluent. In tests carried out with treatment at a concentration of 750 and 1000 mg L(-1) H2O2, analysis of the frequency ofmicronuclei in erythrocytes of Tilapia cf rendalli exposed to treated effluent samples confirmed that there were no mutagenic effects on the fish. Together, these results indicate that the oxidation process offers a good alternative for the removal of colour and toxicity from textile industry effluent.


Subject(s)
Hydrogen Peroxide/chemistry , Industrial Waste/analysis , Ultraviolet Rays , Waste Disposal, Fluid/methods , Animals , Daphnia , Mutagenicity Tests , Oxidation-Reduction , Textile Industry , Toxicity Tests, Acute
SELECTION OF CITATIONS
SEARCH DETAIL