Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Crit Rev Food Sci Nutr ; : 1-22, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37051943

ABSTRACT

Indole-3-carbinol (I3C) is a major dietary component produced in Brassica vegetables from glucosinolates (GLS) upon herbivores' attack. The compound is gaining increasing interest due to its anticancer activity. However, reports about improving its level in plants or other sources are still rare. Unfortunately, I3C is unstable in acidic media and tends to polymerize rendering its extraction and detection challenging. This review presents a multifaceted overview of I3C regarding its natural occurrence, biosynthesis, isolation, and extraction procedure from dietary sources, and optimization for the best recovery yield. Further, an overview is presented on its metabolism and biotransformation inside the body to account for its health benefits and factors to ensure the best metabolic yield. Compile of the different analytical approaches for I3C analysis in dietary sources is presented for the first time, together with approaches for its detection and its metabolism in body fluids for proof of efficacy. Lastly, the chemopreventive effects of I3C and the underlying action mechanisms are summarized. Optimizing the yield and methods for the detection of I3C will assist for its incorporation as a nutraceutical or adjuvant in cancer treatment programs. Highlighting the complete biosynthetic pathway and factors involved in I3C production will aid for its future biotechnological production.

2.
Chembiochem ; 23(21): e202200211, 2022 11 04.
Article in English | MEDLINE | ID: mdl-36173145

ABSTRACT

Two terpene cyclases were used as biocatalytic tool, namely, limonene synthase from Cannabis sativa (CLS) and 5-epi-aristolochene synthase (TEAS) from Nicotiana tabacum. They showed significant substrate flexibility towards non-natural prenyl diphosphates to form novel terpenoids, including core oxa- and thia-heterocycles and alkyne-modified terpenoids. We elucidated the structures of five novel monoterpene-analogues and a known sesquiterpene-analogue. These results reflected the terpene synthases' ability and promiscuity to broaden the pool of terpenoids with structurally complex analogues. Docking studies highlight an on-off conversion of the unnatural substrates.


Subject(s)
Alkyl and Aryl Transferases , Perfume , Terpenes/metabolism , Diphosphates/chemistry , Odorants , Alkynes , Alkyl and Aryl Transferases/metabolism , Biotransformation
3.
New Phytol ; 222(1): 318-334, 2019 04.
Article in English | MEDLINE | ID: mdl-30485455

ABSTRACT

Polyprenylated acylphloroglucinol derivatives, such as xanthones, are natural plant products with interesting pharmacological properties. They are difficult to synthesize chemically. Biotechnological production is desirable but it requires an understanding of the biosynthetic pathways. cDNAs encoding membrane-bound aromatic prenyltransferase (aPT) enzymes from Hypericum sampsonii seedlings (HsPT8px and HsPTpat) and Hypericum calycinum cell cultures (HcPT8px and HcPTpat) were cloned and expressed in Saccharomyces cerevisiae and Nicotiana benthamiana, respectively. Microsomes and chloroplasts were used for functional analysis. The enzymes catalyzed the prenylation of 1,3,6,7-tetrahydroxyxanthone (1367THX) and/or 1,3,6,7-tetrahydroxy-8-prenylxanthone (8PX) and discriminated nine additionally tested acylphloroglucinol derivatives. The transient expression of the two aPT genes preceded the accumulation of the products in elicitor-treated H. calycinum cell cultures. C-terminal yellow fluorescent protein fusions of the two enzymes were localized to the envelope of chloroplasts in N. benthamiana leaves. Based on the kinetic properties of HsPT8px and HsPTpat, the enzymes catalyze sequential rather than parallel addition of two prenyl groups to the carbon atom 8 of 1367THX, yielding gem-diprenylated patulone under loss of aromaticity of the gem-dialkylated ring. Coexpression in yeast significantly increased product formation. The patulone biosynthetic pathway involves multiple subcellular compartments. The aPTs studied here and related enzymes may be promising tools for plant/microbe metabolic pathway engineering.


Subject(s)
Dimethylallyltranstransferase/metabolism , Hypericum/enzymology , Xanthones/chemistry , Xanthones/metabolism , Biocatalysis , Chloroplasts/metabolism , Dimethylallyltranstransferase/genetics , Evolution, Molecular , Gene Expression Regulation, Plant , Hypericum/genetics , Kinetics , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Stereoisomerism
4.
Org Med Chem Lett ; 2(1): 9, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22380482

ABSTRACT

The chemical constituents and biological activities of the terrestrial Aspergillus flavipes MM2 isolated from Egyptian rice hulls are reported. Seven bioactive compounds were obtained, of which one sterol: ergosterol (1), four butyrolactones: butyrolactone I (2), aspulvinone H (3), butyrolactone-V (6) and 4,4'-diydroxypulvinone (7), along with 6-methylsalicylic acid (4) and the cyclopentenone analogue; terrien (5). Structures of the isolated compounds were deduced by intensive studies of their 1D & 2D NMR, MS data and comparison with related structures. The strain extract and the isolated compounds (1-7) were biologically studied against number of microbial strains, and brine shrimp for cytotoxicity. In this article, the taxonomical characterization of A. flavipes MM2 along with its upscale fermentation, isolation and structural assignment of the obtained bioactive metabolites, and evaluate their antimicrobial and cytotoxic activities were described.

SELECTION OF CITATIONS
SEARCH DETAIL
...