Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
J Med Chem ; 63(19): 10773-10781, 2020 10 08.
Article in English | MEDLINE | ID: mdl-32667203

ABSTRACT

Visceral leishmaniasis is responsible for up to 30,000 deaths every year. Current treatments have shortcomings that include toxicity and variable efficacy across endemic regions. Previously, we reported the discovery of GNF6702, a selective inhibitor of the kinetoplastid proteasome, which cleared parasites in murine models of leishmaniasis, Chagas disease, and human African trypanosomiasis. Here, we describe the discovery and characterization of LXE408, a structurally related kinetoplastid-selective proteasome inhibitor currently in Phase 1 human clinical trials. Furthermore, we present high-resolution cryo-EM structures of the Leishmania tarentolae proteasome in complex with LXE408, which provides a compelling explanation for the noncompetitive mode of binding of this novel class of inhibitors of the kinetoplastid proteasome.


Subject(s)
Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacology , Leishmaniasis, Visceral/drug therapy , Oxazoles/chemistry , Oxazoles/pharmacology , Proteasome Inhibitors/chemistry , Proteasome Inhibitors/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology , Animals , Antiprotozoal Agents/therapeutic use , Dogs , Humans , Leishmania donovani/drug effects , Leishmania donovani/isolation & purification , Leishmania major/drug effects , Leishmania major/isolation & purification , Leishmaniasis, Visceral/parasitology , Liver/parasitology , Macaca fascicularis , Mice , Mice, Inbred BALB C , Oxazoles/therapeutic use , Proteasome Inhibitors/therapeutic use , Pyrimidines/therapeutic use , Rats , Rats, Sprague-Dawley , Triazoles/chemistry
2.
Trop Med Infect Dis ; 5(1)2020 Feb 17.
Article in English | MEDLINE | ID: mdl-32079320

ABSTRACT

Current anti-trypanosomal therapies suffer from problems of longer treatment duration, toxicity and inadequate efficacy, hence there is a need for safer, more efficacious and 'easy to use' oral drugs. Previously, we reported the discovery of the triazolopyrimidine (TP) class as selective kinetoplastid proteasome inhibitors with in vivo efficacy in mouse models of leishmaniasis, Chagas Disease and African trypanosomiasis (HAT). For the treatment of HAT, development compounds need to have excellent penetration to the brain to cure the meningoencephalic stage of the disease. Here we describe detailed biological and pharmacological characterization of triazolopyrimidine compounds in HAT specific assays. The TP class of compounds showed single digit nanomolar potency against Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense strains. These compounds are trypanocidal with concentration-time dependent kill and achieved relapse-free cure in vitro. Two compounds, GNF6702 and a new analog NITD689, showed favorable in vivo pharmacokinetics and significant brain penetration, which enabled oral dosing. They also achieved complete cure in both hemolymphatic (blood) and meningoencephalic (brain) infection of human African trypanosomiasis mouse models. Mode of action studies on this series confirmed the 20S proteasome as the target in T. brucei. These proteasome inhibitors have the potential for further development into promising new treatment for human African trypanosomiasis.

3.
Nature ; 537(7619): 229-233, 2016 09 08.
Article in English | MEDLINE | ID: mdl-27501246

ABSTRACT

Chagas disease, leishmaniasis and sleeping sickness affect 20 million people worldwide and lead to more than 50,000 deaths annually. The diseases are caused by infection with the kinetoplastid parasites Trypanosoma cruzi, Leishmania spp. and Trypanosoma brucei spp., respectively. These parasites have similar biology and genomic sequence, suggesting that all three diseases could be cured with drugs that modulate the activity of a conserved parasite target. However, no such molecular targets or broad spectrum drugs have been identified to date. Here we describe a selective inhibitor of the kinetoplastid proteasome (GNF6702) with unprecedented in vivo efficacy, which cleared parasites from mice in all three models of infection. GNF6702 inhibits the kinetoplastid proteasome through a non-competitive mechanism, does not inhibit the mammalian proteasome or growth of mammalian cells, and is well-tolerated in mice. Our data provide genetic and chemical validation of the parasite proteasome as a promising therapeutic target for treatment of kinetoplastid infections, and underscore the possibility of developing a single class of drugs for these neglected diseases.


Subject(s)
Chagas Disease/drug therapy , Kinetoplastida/drug effects , Kinetoplastida/enzymology , Leishmaniasis/drug therapy , Proteasome Endopeptidase Complex/drug effects , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/therapeutic use , Pyrimidines/pharmacology , Triazoles/pharmacology , Trypanosomiasis, African/drug therapy , Animals , Chagas Disease/parasitology , Chymotrypsin/antagonists & inhibitors , Chymotrypsin/metabolism , Disease Models, Animal , Female , Humans , Inhibitory Concentration 50 , Leishmaniasis/parasitology , Mice , Molecular Structure , Molecular Targeted Therapy , Proteasome Inhibitors/adverse effects , Proteasome Inhibitors/classification , Pyrimidines/adverse effects , Pyrimidines/chemistry , Pyrimidines/therapeutic use , Species Specificity , Triazoles/adverse effects , Triazoles/chemistry , Triazoles/therapeutic use , Trypanosomiasis, African/parasitology
5.
Nat Commun ; 5: 5521, 2014 Nov 25.
Article in English | MEDLINE | ID: mdl-25422853

ABSTRACT

The quest for new antimalarial drugs, especially those with novel modes of action, is essential in the face of emerging drug-resistant parasites. Here we describe a new chemical class of molecules, pyrazoleamides, with potent activity against human malaria parasites and showing remarkably rapid parasite clearance in an in vivo model. Investigations involving pyrazoleamide-resistant parasites, whole-genome sequencing and gene transfers reveal that mutations in two proteins, a calcium-dependent protein kinase (PfCDPK5) and a P-type cation-ATPase (PfATP4), are necessary to impart full resistance to these compounds. A pyrazoleamide compound causes a rapid disruption of Na(+) regulation in blood-stage Plasmodium falciparum parasites. Similar effect on Na(+) homeostasis was recently reported for spiroindolones, which are antimalarials of a chemical class quite distinct from pyrazoleamides. Our results reveal that disruption of Na(+) homeostasis in malaria parasites is a promising mode of antimalarial action mediated by at least two distinct chemical classes.


Subject(s)
Amides/pharmacology , Antimalarials/pharmacology , Benzimidazoles/pharmacology , Erythrocytes/parasitology , Malaria/parasitology , Plasmodium falciparum/drug effects , Pyrazoles/pharmacology , Sodium/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Female , Homeostasis/drug effects , Humans , Male , Plasmodium berghei/drug effects , Plasmodium berghei/genetics , Plasmodium berghei/metabolism , Plasmodium falciparum/enzymology , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism , Protozoan Proteins
6.
ACS Med Chem Lett ; 5(8): 947-50, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-25147620

ABSTRACT

Imidazopyridine 1 was identified from a phenotypic screen against P. falciparum (Pf) blood stages and subsequently optimized for activity on liver-stage schizonts of the rodent parasite P. yoelii (Py) as well as hypnozoites of the simian parasite P. cynomolgi (Pc). We applied these various assays to the cell-based lead optimization of the imidazopyrazines, exemplified by 3 (KAI407), and show that optimized compounds within the series with improved pharmacokinetic properties achieve causal prophylactic activity in vivo and may have the potential to target the dormant stages of P. vivax malaria.

7.
Antimicrob Agents Chemother ; 58(9): 5060-7, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24913172

ABSTRACT

Renewed global efforts toward malaria eradication have highlighted the need for novel antimalarial agents with activity against multiple stages of the parasite life cycle. We have previously reported the discovery of a novel class of antimalarial compounds in the imidazolopiperazine series that have activity in the prevention and treatment of blood stage infection in a mouse model of malaria. Consistent with the previously reported activity profile of this series, the clinical candidate KAF156 shows blood schizonticidal activity with 50% inhibitory concentrations of 6 to 17.4 nM against P. falciparum drug-sensitive and drug-resistant strains, as well as potent therapeutic activity in a mouse models of malaria with 50, 90, and 99% effective doses of 0.6, 0.9, and 1.4 mg/kg, respectively. When administered prophylactically in a sporozoite challenge mouse model, KAF156 is completely protective as a single oral dose of 10 mg/kg. Finally, KAF156 displays potent Plasmodium transmission blocking activities both in vitro and in vivo. Collectively, our data suggest that KAF156, currently under evaluation in clinical trials, has the potential to treat, prevent, and block the transmission of malaria.


Subject(s)
Antimalarials/pharmacology , Imidazoles/pharmacology , Malaria, Falciparum/drug therapy , Malaria, Falciparum/transmission , Piperazines/pharmacology , Animals , Inhibitory Concentration 50 , Mice , Mice, Inbred ICR , Plasmodium falciparum/drug effects , Sporozoites/drug effects
8.
J Med Chem ; 57(3): 828-35, 2014 Feb 13.
Article in English | MEDLINE | ID: mdl-24354316

ABSTRACT

A phenotypic screen of a compound library for antiparasitic activity on Trypanosoma brucei, the causative agent of human African trypanosomiasis, led to the identification of substituted 2-(3-aminophenyl)oxazolopyridines as a starting point for hit-to-lead medicinal chemistry. A total of 110 analogues were prepared, which led to the identification of 64, a substituted 2-(3-aminophenyl)imidazopyridine. This compound showed antiparasitic activity in vitro with an EC50 of 2 nM and displayed reasonable druglike properties when tested in a number of in vitro assays. The compound was orally bioavailable and displayed good plasma and brain exposure in mice. Compound 64 cured mice infected with Trypanosoma brucei when dosed orally down to 2.5 mg/kg. Given its potent antiparasitic properties and its ease of synthesis, compound 64 represents a new lead for the development of drugs to treat human African trypanosomiasis.


Subject(s)
Imidazoles/chemical synthesis , Pyridines/chemical synthesis , Trypanocidal Agents/chemical synthesis , Trypanosomiasis, African/drug therapy , Administration, Oral , Animals , Biological Availability , Cell Line, Tumor , Cell Membrane Permeability , Databases, Chemical , Dogs , Female , Humans , Imidazoles/chemistry , Imidazoles/pharmacology , Madin Darby Canine Kidney Cells , Mice , Microsomes, Liver/metabolism , Pyridines/chemistry , Pyridines/pharmacology , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Trypanosoma brucei brucei/growth & development , Trypanosoma brucei rhodesiense/drug effects , Trypanosoma brucei rhodesiense/growth & development , Trypanosomiasis, African/parasitology
9.
Antimicrob Agents Chemother ; 58(3): 1586-95, 2014.
Article in English | MEDLINE | ID: mdl-24366744

ABSTRACT

Preventing relapses of Plasmodium vivax malaria through a radical cure depends on use of the 8-aminoquinoline primaquine, which is associated with safety and compliance issues. For future malaria eradication strategies, new, safer radical curative compounds that efficiently kill dormant liver stages (hypnozoites) will be essential. A new compound with potential radical cure activity was identified using a low-throughput assay of in vitro-cultured hypnozoite forms of Plasmodium cynomolgi (an excellent and accessible model for Plasmodium vivax). In this assay, primary rhesus hepatocytes are infected with P. cynomolgi sporozoites, and exoerythrocytic development is monitored in the presence of compounds. Liver stage cultures are fixed after 6 days and stained with anti-Hsp70 antibodies, and the relative proportions of small (hypnozoite) and large (schizont) forms relative to the untreated controls are determined. This assay was used to screen a series of 18 known antimalarials and 14 new non-8-aminoquinolines (preselected for blood and/or liver stage activity) in three-point 10-fold dilutions (0.1, 1, and 10 µM final concentrations). A novel compound, designated KAI407 showed an activity profile similar to that of primaquine (PQ), efficiently killing the earliest stages of the parasites that become either primary hepatic schizonts or hypnozoites (50% inhibitory concentration [IC50] for hypnozoites, KAI407, 0.69 µM, and PQ, 0.84 µM; for developing liver stages, KAI407, 0.64 µM, and PQ, 0.37 µM). When given as causal prophylaxis, a single oral dose of 100 mg/kg of body weight prevented blood stage parasitemia in mice. From these results, we conclude that KAI407 may represent a new compound class for P. vivax malaria prophylaxis and potentially a radical cure.


Subject(s)
Antimalarials/pharmacology , Imidazoles/pharmacology , Malaria/drug therapy , Plasmodium cynomolgi/drug effects , Pyrazines/pharmacology , Animals , Antimalarials/therapeutic use , Drug Evaluation, Preclinical/methods , Female , Hepatocytes/parasitology , Imidazoles/therapeutic use , In Vitro Techniques , Liver/parasitology , Macaca mulatta/parasitology , Malaria/parasitology , Malaria/prevention & control , Mice , Mice, Inbred ICR , Pyrazines/therapeutic use , Sporozoites/drug effects
10.
Nature ; 504(7479): 248-253, 2013 Dec 12.
Article in English | MEDLINE | ID: mdl-24284631

ABSTRACT

Achieving the goal of malaria elimination will depend on targeting Plasmodium pathways essential across all life stages. Here we identify a lipid kinase, phosphatidylinositol-4-OH kinase (PI(4)K), as the target of imidazopyrazines, a new antimalarial compound class that inhibits the intracellular development of multiple Plasmodium species at each stage of infection in the vertebrate host. Imidazopyrazines demonstrate potent preventive, therapeutic, and transmission-blocking activity in rodent malaria models, are active against blood-stage field isolates of the major human pathogens P. falciparum and P. vivax, and inhibit liver-stage hypnozoites in the simian parasite P. cynomolgi. We show that imidazopyrazines exert their effect through inhibitory interaction with the ATP-binding pocket of PI(4)K, altering the intracellular distribution of phosphatidylinositol-4-phosphate. Collectively, our data define PI(4)K as a key Plasmodium vulnerability, opening up new avenues of target-based discovery to identify drugs with an ideal activity profile for the prevention, treatment and elimination of malaria.


Subject(s)
1-Phosphatidylinositol 4-Kinase/antagonists & inhibitors , Malaria/drug therapy , Malaria/parasitology , Plasmodium/drug effects , Plasmodium/enzymology , 1-Phosphatidylinositol 4-Kinase/chemistry , 1-Phosphatidylinositol 4-Kinase/genetics , 1-Phosphatidylinositol 4-Kinase/metabolism , Adenosine Triphosphate/metabolism , Animals , Binding Sites , Cytokinesis/drug effects , Drug Resistance/drug effects , Drug Resistance/genetics , Fatty Acids/metabolism , Female , Hepatocytes/parasitology , Humans , Imidazoles/metabolism , Imidazoles/pharmacology , Life Cycle Stages/drug effects , Macaca mulatta , Male , Models, Biological , Models, Molecular , Phosphatidylinositol Phosphates/metabolism , Plasmodium/classification , Plasmodium/growth & development , Pyrazoles/metabolism , Pyrazoles/pharmacology , Quinoxalines/metabolism , Quinoxalines/pharmacology , Reproducibility of Results , Schizonts/cytology , Schizonts/drug effects , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism
11.
J Med Chem ; 55(9): 4244-73, 2012 May 10.
Article in English | MEDLINE | ID: mdl-22524250

ABSTRACT

On the basis of the initial success of optimization of a novel series of imidazolopiperazines, a second generation of compounds involving changes in the core piperazine ring was synthesized to improve antimalarial properties. These changes were carried out to further improve the potency and metabolic stability of the compounds by leveraging the outcome of a set of in vitro metabolic identification studies. The optimized 8,8-dimethyl imidazolopiperazine analogues exhibited improved potency, in vitro metabolic stability profile and, as a result, enhanced oral exposure in vivo in mice. The optimized compounds were found to be more efficacious than the current antimalarials in a malaria mouse model. They exhibit moderate oral exposure in rat pharmacokinetic studies to achieve sufficient multiples of the oral exposure at the efficacious dose in toxicology studies.


Subject(s)
Antimalarials/pharmacology , Imidazoles/pharmacology , Malaria, Falciparum/drug therapy , Piperazines/pharmacology , Plasmodium falciparum/drug effects , Animals , Antimalarials/chemical synthesis , Antimalarials/chemistry , Antimalarials/pharmacokinetics , Biological Availability , Caco-2 Cells , Humans , Imidazoles/chemical synthesis , Imidazoles/chemistry , Imidazoles/pharmacokinetics , Malaria, Falciparum/parasitology , Mice , Mice, Inbred BALB C , Piperazines/chemical synthesis , Piperazines/chemistry , Piperazines/pharmacokinetics , Plasmodium falciparum/metabolism , Rats , Rats, Wistar , Structure-Activity Relationship
12.
Science ; 334(6061): 1372-7, 2011 Dec 09.
Article in English | MEDLINE | ID: mdl-22096101

ABSTRACT

Most malaria drug development focuses on parasite stages detected in red blood cells, even though, to achieve eradication, next-generation drugs active against both erythrocytic and exo-erythrocytic forms would be preferable. We applied a multifactorial approach to a set of >4000 commercially available compounds with previously demonstrated blood-stage activity (median inhibitory concentration < 1 micromolar) and identified chemical scaffolds with potent activity against both forms. From this screen, we identified an imidazolopiperazine scaffold series that was highly enriched among compounds active against Plasmodium liver stages. The orally bioavailable lead imidazolopiperazine confers complete causal prophylactic protection (15 milligrams/kilogram) in rodent models of malaria and shows potent in vivo blood-stage therapeutic activity. The open-source chemical tools resulting from our effort provide starting points for future drug discovery programs, as well as opportunities for researchers to investigate the biology of exo-erythrocytic forms.


Subject(s)
Antimalarials/pharmacology , Drug Discovery , Imidazoles/pharmacology , Liver/parasitology , Malaria/drug therapy , Piperazines/pharmacology , Plasmodium/drug effects , Animals , Antimalarials/chemistry , Antimalarials/pharmacokinetics , Antimalarials/therapeutic use , Cell Line, Tumor , Drug Evaluation, Preclinical , Drug Resistance , Erythrocytes/parasitology , Humans , Imidazoles/chemistry , Imidazoles/pharmacokinetics , Imidazoles/therapeutic use , Malaria/parasitology , Malaria/prevention & control , Mice , Mice, Inbred BALB C , Molecular Structure , Piperazines/chemistry , Piperazines/pharmacokinetics , Piperazines/therapeutic use , Plasmodium/cytology , Plasmodium/growth & development , Plasmodium/physiology , Plasmodium berghei/cytology , Plasmodium berghei/drug effects , Plasmodium berghei/growth & development , Plasmodium berghei/physiology , Plasmodium falciparum/cytology , Plasmodium falciparum/drug effects , Plasmodium falciparum/growth & development , Plasmodium falciparum/physiology , Plasmodium yoelii/cytology , Plasmodium yoelii/drug effects , Plasmodium yoelii/growth & development , Plasmodium yoelii/physiology , Polymorphism, Single Nucleotide , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Random Allocation , Small Molecule Libraries , Sporozoites/drug effects , Sporozoites/growth & development
13.
J Med Chem ; 54(14): 5116-30, 2011 Jul 28.
Article in English | MEDLINE | ID: mdl-21644570

ABSTRACT

Starting from a hit series from a GNF compound library collection and based on a cell-based proliferation assay of Plasmodium falciparum, a novel imidazolopiperazine scaffold was optimized. SAR for this series of compounds is discussed, focusing on optimization of cellular potency against wild-type and drug resistant parasites and improvement of physiochemical and pharmacokinetic properties. The lead compounds in this series showed good potencies in vitro and decent oral exposure levels in vivo. In a Plasmodium berghei mouse infection model, one lead compound lowered the parasitemia level by 99.4% after administration of 100 mg/kg single oral dose and prolonged mice survival by an average of 17.0 days. The lead compounds were also well-tolerated in the preliminary in vitro toxicity studies and represents an interesting lead for drug development.


Subject(s)
Antimalarials/chemical synthesis , Imidazoles/chemical synthesis , Piperazines/chemical synthesis , Amino Acids/chemical synthesis , Amino Acids/chemistry , Amino Acids/pharmacology , Aniline Compounds/chemical synthesis , Aniline Compounds/chemistry , Aniline Compounds/pharmacology , Animals , Antimalarials/chemistry , Antimalarials/pharmacology , Benzene Derivatives/chemical synthesis , Benzene Derivatives/chemistry , Benzene Derivatives/pharmacology , Cell Line , Drug Resistance , Female , Humans , Imidazoles/chemistry , Imidazoles/pharmacology , Inhibitory Concentration 50 , Malaria/drug therapy , Mice , Mice, Inbred BALB C , Piperazines/chemistry , Piperazines/pharmacology , Plasmodium berghei , Plasmodium falciparum/drug effects , Rats , Structure-Activity Relationship
14.
Curr Med Chem ; 18(6): 853-71, 2011.
Article in English | MEDLINE | ID: mdl-21182479

ABSTRACT

Malaria is a major health and economic threat to about 40% of the world's population. The absence of effective vaccines and widespread resistance to many of the current antimalarials make this disease an urgent target for the scientific community. As a developing world disease, most of the efforts towards new drugs have been from academic and government supported projects. This has recently changed with the emergence of new funding mechanisms and public-private partnerships (PPP). The purpose of this review is to highlight the different approaches used to discover new antimalarial agents, including target-based approaches, derivatization of known antimalarial pharmacophores, drug repositioning from non-malaria indication and cell-based screening. Specific examples are provided to illustrate the pros and cons in the context of how to best address the ever-increasing drug resistance and how to cost-effectively identify new antimalarials. More attention is given to relatively mature programs that have gone through extensive SAR study, pharmacology and/or toxicity studies in the last ten years.


Subject(s)
Antimalarials/chemistry , Antimalarials/pharmacology , Drug Discovery/methods , Animals , Cell Line , Humans
15.
Bioorg Med Chem Lett ; 20(14): 4027-31, 2010 Jul 15.
Article in English | MEDLINE | ID: mdl-20610151

ABSTRACT

A novel family of 1H-imidazol-2-yl-pyrimidine-4,6-diamines has been identified with potent activity against the erythrocyte-stage of Plasmodium falciparum (Pf), the most common causative agent of malaria. A systematic SAR study resulted in the identification of compound 40 which exhibits good potency against both wild-type and drug resistant parasites and exhibits good in vivo pharmacokinetic properties.


Subject(s)
Antimalarials/chemistry , Plasmodium falciparum/drug effects , Pyrimidines/chemistry , Animals , Antimalarials/pharmacokinetics , Antimalarials/pharmacology , Drug Discovery , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Structure-Activity Relationship
16.
Bioorg Med Chem Lett ; 19(24): 6970-4, 2009 Dec 15.
Article in English | MEDLINE | ID: mdl-19879133

ABSTRACT

Screening our in-house compound collection using a cell based Plasmodium falciparum proliferation assay we discovered a known pan-kinase inhibitor scaffold as a hit. Further optimization of this series led us to a novel benzamide scaffold which was devoid of human kinase activity while retaining its antiplasmodial activity. The evolution of this compound series leading to optimized candidates with good cellular potency against multiple strains as well as decent in vivo profile is described in this Letter.


Subject(s)
Antimalarials/chemistry , Benzamides/chemistry , Enzyme Inhibitors/chemistry , Phosphotransferases/antagonists & inhibitors , Plasmodium falciparum/enzymology , Animals , Antimalarials/chemical synthesis , Antimalarials/pharmacology , Benzamides/chemical synthesis , Benzamides/pharmacology , Directed Molecular Evolution , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Humans , Mice , Plasmodium falciparum/drug effects
17.
J Org Chem ; 74(16): 6231-6, 2009 Aug 21.
Article in English | MEDLINE | ID: mdl-19630375

ABSTRACT

Formal aromatic C-H insertion of rhodium(II) carbenoid was intensively investigated to develop a new methodology and probe its mechanism. Contrasting with the previously proposed direct C-H insertion, the mechanism was revealed to be electrophilic aromatic substitution, which was supported by substituent effects on the aromatic ring and a secondary deuterium kinetic isotope effect. Various isoquinolinones were synthesized intramolecularly via six-membered ring formation with high regio- and diastereoselectivity, while averting the common Buchner-type reaction. Intermolecularly, dirhodium catalyzed formal aromatic C-H insertion on electron-rich aromatics was also achieved.


Subject(s)
Carbon/chemistry , Hydrogen/chemistry , Isoquinolines/chemistry , Isoquinolines/chemical synthesis , Catalysis , Diazonium Compounds/chemistry , Kinetics , Models, Molecular , Molecular Conformation , Rhodium/chemistry , Stereoisomerism , Substrate Specificity
18.
Bioorg Med Chem Lett ; 18(22): 5916-9, 2008 Nov 15.
Article in English | MEDLINE | ID: mdl-18667312

ABSTRACT

Irreversible HER/erbB inhibitors selectively inhibit HER-family kinases by targeting a unique cysteine residue located within the ATP-binding pocket. Sequence alignment reveals that this rare cysteine is also present in ten other protein kinases including all five Tec-family members. We demonstrate that the Tec-family kinase Bmx is potently inhibited by irreversible modification at Cys496 by clinical stage EGFR inhibitors such as CI-1033. This cross-reactivity may have significant clinical implications.


Subject(s)
ErbB Receptors/antagonists & inhibitors , Morpholines/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Quinazolines/pharmacology , Animals , Cysteine/genetics , Cysteine/metabolism , Mice , Molecular Structure , Morpholines/chemistry , Quinazolines/chemistry , Sequence Homology, Amino Acid
19.
Proc Natl Acad Sci U S A ; 105(26): 9059-64, 2008 Jul 01.
Article in English | MEDLINE | ID: mdl-18579783

ABSTRACT

The growing resistance to current first-line antimalarial drugs represents a major health challenge. To facilitate the discovery of new antimalarials, we have implemented an efficient and robust high-throughput cell-based screen (1,536-well format) based on proliferation of Plasmodium falciparum (Pf) in erythrocytes. From a screen of approximately 1.7 million compounds, we identified a diverse collection of approximately 6,000 small molecules comprised of >530 distinct scaffolds, all of which show potent antimalarial activity (<1.25 microM). Most known antimalarials were identified in this screen, thus validating our approach. In addition, we identified many novel chemical scaffolds, which likely act through both known and novel pathways. We further show that in some cases the mechanism of action of these antimalarials can be determined by in silico compound activity profiling. This method uses large datasets from unrelated cellular and biochemical screens and the guilt-by-association principle to predict which cellular pathway and/or protein target is being inhibited by select compounds. In addition, the screening method has the potential to provide the malaria community with many new starting points for the development of biological probes and drugs with novel antiparasitic activities.


Subject(s)
Antimalarials/analysis , Antimalarials/pharmacology , Computational Biology , Animals , Antimalarials/chemistry , Antimalarials/therapeutic use , Cluster Analysis , Drug Evaluation, Preclinical , Drug Resistance/drug effects , Folic Acid Antagonists/analysis , Folic Acid Antagonists/chemistry , Folic Acid Antagonists/pharmacology , Malaria/drug therapy , Models, Molecular , Parasites/drug effects , Plasmodium falciparum/drug effects , Plasmodium falciparum/enzymology , Reproducibility of Results , Structure-Activity Relationship , Tetrahydrofolate Dehydrogenase/chemistry
20.
Nat Chem Biol ; 4(6): 347-56, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18454143

ABSTRACT

Calcium-dependent protein kinases play a crucial role in intracellular calcium signaling in plants, some algae and protozoa. In Plasmodium falciparum, calcium-dependent protein kinase 1 (PfCDPK1) is expressed during schizogony in the erythrocytic stage as well as in the sporozoite stage. It is coexpressed with genes that encode the parasite motor complex, a cellular component required for parasite invasion of host cells, parasite motility and potentially cytokinesis. A targeted gene-disruption approach demonstrated that pfcdpk1 seems to be essential for parasite viability. An in vitro biochemical screen using recombinant PfCDPK1 against a library of 20,000 compounds resulted in the identification of a series of structurally related 2,6,9-trisubstituted purines. Compound treatment caused sudden developmental arrest at the late schizont stage in P. falciparum and a large reduction in intracellular parasites in Toxoplasma gondii, which suggests a possible role for PfCDPK1 in regulation of parasite motility during egress and invasion.


Subject(s)
Adenine/analogs & derivatives , Antimalarials/pharmacology , Cyclohexylamines/pharmacology , Gene Expression Regulation, Enzymologic/genetics , Malaria/parasitology , Plasmodium falciparum/enzymology , Protein Kinases/drug effects , Protein Kinases/genetics , Protozoan Proteins/antagonists & inhibitors , Adenine/chemistry , Adenine/pharmacology , Adenine/therapeutic use , Animals , Antimalarials/chemistry , Antimalarials/therapeutic use , CHO Cells , Cell Line , Cell Proliferation/drug effects , Cricetinae , Cricetulus , Cyclohexylamines/chemistry , Cyclohexylamines/therapeutic use , Drug Evaluation, Preclinical , Enzyme Activation/drug effects , Gene Expression Regulation, Enzymologic/drug effects , HeLa Cells , Humans , Life Cycle Stages/drug effects , Malaria/drug therapy , Malaria/immunology , Male , Mice , Mice, Inbred BALB C , Models, Molecular , Molecular Structure , Molecular Weight , Movement/drug effects , Oligonucleotide Array Sequence Analysis/methods , Parasitic Sensitivity Tests , Plasmodium falciparum/growth & development , Protein Kinases/physiology , Protozoan Proteins/genetics , Protozoan Proteins/physiology , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/genetics , Small Molecule Libraries , Stereoisomerism , Structure-Activity Relationship , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL