Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 537(7619): 229-233, 2016 09 08.
Article in English | MEDLINE | ID: mdl-27501246

ABSTRACT

Chagas disease, leishmaniasis and sleeping sickness affect 20 million people worldwide and lead to more than 50,000 deaths annually. The diseases are caused by infection with the kinetoplastid parasites Trypanosoma cruzi, Leishmania spp. and Trypanosoma brucei spp., respectively. These parasites have similar biology and genomic sequence, suggesting that all three diseases could be cured with drugs that modulate the activity of a conserved parasite target. However, no such molecular targets or broad spectrum drugs have been identified to date. Here we describe a selective inhibitor of the kinetoplastid proteasome (GNF6702) with unprecedented in vivo efficacy, which cleared parasites from mice in all three models of infection. GNF6702 inhibits the kinetoplastid proteasome through a non-competitive mechanism, does not inhibit the mammalian proteasome or growth of mammalian cells, and is well-tolerated in mice. Our data provide genetic and chemical validation of the parasite proteasome as a promising therapeutic target for treatment of kinetoplastid infections, and underscore the possibility of developing a single class of drugs for these neglected diseases.


Subject(s)
Chagas Disease/drug therapy , Kinetoplastida/drug effects , Kinetoplastida/enzymology , Leishmaniasis/drug therapy , Proteasome Endopeptidase Complex/drug effects , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/therapeutic use , Pyrimidines/pharmacology , Triazoles/pharmacology , Trypanosomiasis, African/drug therapy , Animals , Chagas Disease/parasitology , Chymotrypsin/antagonists & inhibitors , Chymotrypsin/metabolism , Disease Models, Animal , Female , Humans , Inhibitory Concentration 50 , Leishmaniasis/parasitology , Mice , Molecular Structure , Molecular Targeted Therapy , Proteasome Inhibitors/adverse effects , Proteasome Inhibitors/classification , Pyrimidines/adverse effects , Pyrimidines/chemistry , Pyrimidines/therapeutic use , Species Specificity , Triazoles/adverse effects , Triazoles/chemistry , Triazoles/therapeutic use , Trypanosomiasis, African/parasitology
3.
Curr Med Chem ; 18(6): 853-71, 2011.
Article in English | MEDLINE | ID: mdl-21182479

ABSTRACT

Malaria is a major health and economic threat to about 40% of the world's population. The absence of effective vaccines and widespread resistance to many of the current antimalarials make this disease an urgent target for the scientific community. As a developing world disease, most of the efforts towards new drugs have been from academic and government supported projects. This has recently changed with the emergence of new funding mechanisms and public-private partnerships (PPP). The purpose of this review is to highlight the different approaches used to discover new antimalarial agents, including target-based approaches, derivatization of known antimalarial pharmacophores, drug repositioning from non-malaria indication and cell-based screening. Specific examples are provided to illustrate the pros and cons in the context of how to best address the ever-increasing drug resistance and how to cost-effectively identify new antimalarials. More attention is given to relatively mature programs that have gone through extensive SAR study, pharmacology and/or toxicity studies in the last ten years.


Subject(s)
Antimalarials/chemistry , Antimalarials/pharmacology , Drug Discovery/methods , Animals , Cell Line , Humans
4.
Arch Biochem Biophys ; 412(1): 3-12, 2003 Apr 01.
Article in English | MEDLINE | ID: mdl-12646261

ABSTRACT

The C-terminal alpha-amide moiety of most peptide hormones arises by the posttranslational cleavage of a glycine-extended precursor in a reaction catalyzed by bifunctional peptidylglycine alpha-amidating monooxygenase (PAM). Glutathione and the S-alkylated glutathiones have a C-terminal glycine and are, thus, potential substrates for PAM. The addition of PAM to glutathione, a series of S-alkylated glutathiones, and leukotriene C(4) results in the consumption of O(2) and the production of the corresponding amidated peptide and glyoxylate. This reaction proceeds in two steps with the intermediate formation of a C-terminal alpha-hydroxyglycine-extended peptide. Amidated glutathione (gammaGlu-Cys-amide) is a relatively poor substrate for glutathione S-transferase with a V/K value that is 1.3% of that for glutathione. Peptide substrates containing a penultimate hydrophobic or sulfur-containing amino acid exhibit the highest (V/K)(app) values for PAM-catalyzed amidation. The S-alkylated glutathiones incorporate both features in the penultimate position with S-decylglutathione having the highest (V/K)(app) of the substrates described in this report.


Subject(s)
Glutathione/chemistry , Leukotriene C4/chemistry , Mixed Function Oxygenases/chemistry , Multienzyme Complexes/chemistry , Amino Acids/chemistry , Animals , Chromatography, High Pressure Liquid , Chromatography, Liquid , Dose-Response Relationship, Drug , Glutathione Transferase/metabolism , Horses , Hydrolysis , Kinetics , Mass Spectrometry , Models, Chemical , Oxygen/metabolism , Peptides/chemistry , Protein Binding , Protein Structure, Tertiary , Time Factors
5.
J Org Chem ; 67(3): 674-83, 2002 Feb 08.
Article in English | MEDLINE | ID: mdl-11856006

ABSTRACT

A novel method for the mono-N-alkylation of primary amines, diamines, and polyamines was developed using cesium bases in order to prepare secondary amines efficiently. A cesium base not only promoted alkylation of primary amines but also suppressed overalkylations of the produced secondary amines. Various amines, alkyl bromides, and alkyl sulfonates were examined, and the results demonstrated this methodology was highly chemoselective to favor mono-N-alkylation over dialkylation. In particular, use of either sterically demanding substrates or amino acid derivatives afforded the secondary amines exclusively, offering wide applications in peptidomimetic syntheses.


Subject(s)
Amines/chemistry , Cesium/chemistry , Alkylation , Magnetic Resonance Spectroscopy , Molecular Mimicry , Peptides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...