Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
2.
Mol Cancer Ther ; 21(4): 658-666, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35131877

ABSTRACT

Antibody-based PET (immunoPET) with radiotracers that recognize specific cells of the immune system provides an opportunity to monitor immune cell trafficking at the organismal scale. We previously reported the visualization of human CD8+ T cells, including CD8+ tumor-infiltrating lymphocytes (TIL), in mice using a humanized CD8-targeted minibody. Given the important role of CD4+ T cells in adaptive immune responses of health and disease including infections, tumors, and autoimmunity, we explored immunoPET using an anti-human-CD4 minibody. We assessed the ability of [64Cu]Cu-NOTA-IAB41 to bind to various CD4+ T-cell subsets in vitro. We also determined the effect of the CD4-targeted minibody on CD4+ T-cell abundance, proliferation, and activation state in vitro. We subsequently evaluated the ability of the radiotracer to visualize CD4+ T cells in T-cell rich organs and orthotopic brain tumors in vivo. For the latter, we injected the [64Cu]Cu-NOTA-IAB41 radiotracer into humanized mice that harbored intracranial patient-derived glioblastoma (GBM) xenografts and performed in vivo PET, ex vivo autoradiography, and anti-CD4 IHC on serial brain sections. [64Cu]Cu-NOTA-IAB41 specifically detects human CD4+ T cells without impacting their abundance, proliferation, and activation. In humanized mice, [64Cu]Cu-NOTA-IAB41 can visualize various peripheral tissues in addition to orthotopically implanted GBM tumors. [64Cu]Cu-NOTA-IAB41 is able to visualize human CD4+ T cells in humanized mice and can provide noninvasive quantification of CD4+ T-cell distribution on the organismal scale.


Subject(s)
CD4-Positive T-Lymphocytes , Copper Radioisotopes , Animals , Cell Line, Tumor , Humans , Mice , Positron-Emission Tomography/methods
3.
Clin Cancer Res ; 27(22): 6145-6155, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34475100

ABSTRACT

PURPOSE: Abnormal Notch signaling promotes cancer cell growth and tumor progression in various cancers. Targeting γ-secretase, a pivotal regulator in the Notch pathway, has yielded numerous γ-secretase inhibitors (GSIs) for clinical investigation in the last 2 decades. However, GSIs have demonstrated minimal success in clinical trials in part due to the lack of specific and precise tools to assess γ-secretase activity and its inhibition in vivo. EXPERIMENTAL DESIGN: We designed an imaging probe based on GSI Semagacestat structure and synthesized the radioiodine-labeled analogues [131I]- or [124I]-PN67 from corresponding trimethyl-tin precursors. Both membrane- and cell-based ligand-binding assays were performed using [131I]-PN67 to determine the binding affinity and specificity for γ-secretase in vitro. Moreover, we evaluated [124I]-PN67 by PET imaging in mammary tumor and glioblastoma mouse models. RESULTS: The probe was synthesized through iodo-destannylation using chloramine-T as an oxidant with a high labeling yield and efficiency. In vitro binding results demonstrate the high specificity of this probe and its ability for target replacement study by clinical GSIs. PET imaging studies demonstrated a significant (P < 0.05) increased in the uptake of [124I]-PN67 in tumors versus blocking or sham control groups across multiple mouse models, including 4T1 allograft, MMTV-PyMT breast cancer, and U87 glioblastoma allograft. Ex vivo biodistribution and autoradiography corroborate these results, indicating γ-secretase specific tumor accumulation of [124I]-PN67. CONCLUSIONS: [124I]-PN67 is a novel PET imaging agent that enables assessment of γ-secretase activity and target engagement of clinical GSIs.


Subject(s)
Amyloid Precursor Protein Secretases , Breast Neoplasms , Animals , Breast Neoplasms/pathology , Female , Humans , Iodine Radioisotopes , Mice , Positron-Emission Tomography , Receptors, Notch/metabolism , Tissue Distribution
4.
Mol Cancer Ther ; 20(10): 2026-2034, 2021 10.
Article in English | MEDLINE | ID: mdl-34349003

ABSTRACT

Patients with pancreatic ductal adenocarcinoma (PDAC) do not benefit from immune checkpoint blockade (ICB) along the PD-1/PD-L1 axis. Variable PD-L1 expression in PDAC indicates a potential access issue of PD-L1-targeted therapy. To monitor target engagement of PD-L1-targeted therapy, we generated a PD-L1-targeted PET tracer labeled with zirconium-89 (89Zr). As the MAPK signaling pathway (MEK and ERK) is known to modulate PD-L1 expression in other tumor types, we used [89Zr]Zr-DFO-anti-PD-L1 as a tool to noninvasively assess whether manipulation of the MAPK signaling cascade could be leveraged to modulate PD-L1 expression and thereby immunotherapeutic outcomes in PDAC. In this study, we observed that the inhibition of MEK or ERK is sufficient to increase PD-L1 expression, which we hypothesized could be leveraged for anti-PD-L1 immune checkpoint therapy. We found that the combination of ERK inhibition and anti-PD-L1 therapy corresponded with a significant improvement of overall survival in a syngeneic mouse model of PDAC. Furthermore, IHC analysis indicates that the survival benefit may be CD8+ T-cell mediated. The therapeutic and molecular imaging tool kit developed could be exploited to better structure clinical trials and address the therapeutic gaps in challenging malignancies such as PDAC.


Subject(s)
B7-H1 Antigen/antagonists & inhibitors , Carcinoma, Pancreatic Ductal/drug therapy , Drug Synergism , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Immune Checkpoint Inhibitors/pharmacology , Pancreatic Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Animals , Apoptosis , B7-H1 Antigen/immunology , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Proliferation , Drug Therapy, Combination , Gene Expression Regulation, Neoplastic , Humans , Male , Mice , Mice, Inbred C57BL , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , Pancreatic Neoplasms
5.
Mol Imaging Biol ; 23(3): 301-309, 2021 06.
Article in English | MEDLINE | ID: mdl-33754293

ABSTRACT

Recent events in America in 2020 have stimulated a worldwide movement to dismantle anti-Black racism in all facets of our lives. Anti-Black racism is, as defined by the Movement for Black Lives, a "term used to specifically describe the unique discrimination, violence, and harm imposed on and impacting Black people specifically." In science, technology, engineering, and mathematics (STEM), we have yet to achieve the goal and responsibility to ensure that the field reflects the diversity of our lived experiences. Members of the Women in Molecular Imaging Network (WIMIN) have come together to take a stand on diversity, equity, and inclusion in the field of molecular imaging. We strongly condemn oppression in all its forms and strive to identify and dismantle barriers that lead to inequities in the molecular imaging community and STEM as a whole. In this series coined "Visions" (Antiracism and Allyship in Action), we identify and discuss specific actionable items for improving diversity and representation in molecular imaging and ensuring inclusion of all members of the community, inclusive of race, disability, ethnicity, religion, or LGBTQ+ identity. Although the issues highlighted here extend to other under-recruited and equity-seeking groups, for this first article, we are focusing on one egregious and persistent form of discrimination: anti-Black racism. In this special article, Black women residing in America present their lived experiences in the molecular imaging field and give candid insights into the challenges, frustrations, and hopes of our Black friends and colleagues. While this special article focuses on the experiences of Black women, we would like the readers to reflect on their anti-Blackness toward men, transgender, nonbinary, and gender non-conforming people. From the vulnerability we have asked of all our participants, these stories are meant to inspire and invoke active antiracist work among the readership. We present strategies for dismantling systemic racism that research centers and universities can implement in the recruitment, retention, mentorship, and development of Black trainees and professionals. We would like to specifically acknowledge the Black women who took the time to be interviewed, write perspectives, and share their lived experiences in hopes that it will inspire genuine and lasting change.


Subject(s)
Molecular Imaging , Racism , Systemic Racism , Black or African American , Career Choice , Cooperative Behavior , Cultural Diversity , Engineering , Female , Humans , Male , United States
6.
Clin Cancer Res ; 27(7): 1958-1966, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33495310

ABSTRACT

PURPOSE: Glioblastoma (GBM) is the most common malignant brain tumor in adults. Various immunotherapeutic approaches to improve patient survival are being developed, but the molecular mechanisms of immunotherapy resistance are currently unknown. Here, we explored the ability of a humanized radiolabeled CD8-targeted minibody to noninvasively quantify tumor-infiltrating CD8-positive (CD8+) T cells using PET. EXPERIMENTAL DESIGN: We generated a peripheral blood mononuclear cell (PBMC) humanized immune system (HIS) mouse model and quantified the absolute number of CD8+ T cells by flow cytometry relative to the [64Cu]Cu-NOTA-anti-CD8 PET signal. To evaluate a patient-derived orthotopic GBM HIS model, we intracranially injected cells into NOG mice, humanized cohorts with multiple HLA-matched PBMC donors, and quantified CD8+ tumor-infiltrating lymphocytes by IHC. To determine whether [64Cu]Cu-NOTA-anti-CD8 images brain parenchymal T-cell infiltrate in GBM tumors, we performed PET and autoradiography and subsequently stained serial sections of brain tumor tissue by IHC for CD8+ T cells. RESULTS: Nontumor-bearing NOG mice injected with human PBMCs showed prominent [64Cu]Cu-NOTA-anti-CD8 uptake in the spleen and minimal radiotracer localization to the normal brain. NOG mice harboring intracranial human GBMs yielded high-resolution PET images of tumor-infiltrating CD8+ T cells. Radiotracer retention correlated with CD8+ T-cell numbers in spleen and tumor tissue. Our study demonstrates the ability of [64Cu]Cu-NOTA-anti-CD8 PET to quantify peripheral and tumor-infiltrating CD8+ T cells in brain tumors. CONCLUSIONS: Human CD8+ T cells infiltrate an orthotopic GBM in a donor-dependent manner. Furthermore, [64Cu]Cu-NOTA-anti-CD8 quantitatively images both peripheral and brain parenchymal human CD8+ T cells.


Subject(s)
Brain Neoplasms/diagnostic imaging , CD8 Antigens/immunology , CD8-Positive T-Lymphocytes/metabolism , Glioblastoma/diagnostic imaging , Heterocyclic Compounds, 1-Ring/pharmacokinetics , Lymphocytes, Tumor-Infiltrating/metabolism , Positron-Emission Tomography/methods , Radiopharmaceuticals/pharmacokinetics , Animals , Brain Neoplasms/immunology , Copper Radioisotopes , Female , Glioblastoma/immunology , Humans , Isotope Labeling , Mice
7.
Clin Cancer Res ; 27(4): 911-912, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33328345

ABSTRACT

Chimeric antigen receptor (CAR)-T cell therapy has generated unprecedented advances in the treatment of hematologic cancers, but readily translatable imaging approaches to visualize the in vivo dynamics of CAR-T cells are lacking. Noninvasive PET imaging is the ideal tool to monitor CAR-T cells.See related article by Simonetta et al., p. 1058.


Subject(s)
Hematologic Neoplasms , Receptors, Chimeric Antigen , Humans , Immunotherapy , Immunotherapy, Adoptive , Receptors, Chimeric Antigen/genetics , T-Lymphocytes
8.
Inorg Chem ; 59(23): 17473-17487, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33169605

ABSTRACT

Over the last three decades, the chemistry of zirconium has facilitated antibody development and the clinical management of disease in the precision medicine era. Scientists have harnessed its reactivity, coordination chemistry, and nuclear chemistry to develop antibody-based radiopharmaceuticals incorporating zirconium-89 (89Zr: t1/2 = 78.4 h, ß+: 22.8%, Eß+max = 901 keV; EC: 77%, Eγ = 909 keV) to improve disease detection, identify patients for individualized therapeutic interventions. and monitor their response to those interventions. However, release of the 89Zr4+ ion from the radiopharmaceutical remains a concern, since it may confound the interpretation of clinical imaging data, negatively affect dosimetric calculations, and hinder treatment planning. In this report, we relate our novel observations involving the use of polyazamacrocycles as zirconium-89 chelators. We describe the synthesis and complete characterization of zirconium 2,2',2″,2‴-(1,4,7,10-tetraazacyclotridecane-1,4,7,10-tetrayl)tetraacetic acid (Zr-TRITA), zirconium 3,6,9,15-Tetraazabicyclo[9.3.1] pentadeca-1(15),11,13-triene-3,6,9-triacetic acid (Zr-PCTA), and zirconium 2,2',2″-(1,4,7-triazacyclononane-1,4,7-triyl)triacetic acid (Zr-NOTA). In addition, we elucidate the solid-state structure of each complex using single-crystal X-ray diffraction analysis. Finally, we found that [89Zr]Zr-PCTA and [89Zr]Zr-NOTA demonstrate excellent stability in vitro and in vivo and provide a rationale for these observations. These innovative findings have the potential to guide the development of safer and more robust immuno-PET agents to improve precision medicine applications.

9.
J Nucl Med ; 61(9): 1361-1368, 2020 09.
Article in English | MEDLINE | ID: mdl-32005774

ABSTRACT

Acidosis is a key driver for many diseases, including cancer, sepsis, and stroke. The spatiotemporal dynamics of dysregulated pH across disease remain elusive, and current diagnostic strategies do not provide localization of pH alterations. We sought to explore if PET imaging using hydrophobic cyclic peptides that partition into the cellular membrane at low extracellular pH (denoted as pH [low] insertion cycles, or pHLIC) can permit accurate in vivo visualization of acidosis. Methods: Acid-sensitive cyclic peptide c[E4W5C] pHLIC was conjugated to bifunctional maleimide-NO2A and radiolabeled with 64Cu (half-life, 12.7 h). C57BL/6J mice were administered lipopolysaccharide (15 mg/kg) or saline (vehicle) and serially imaged with [64Cu]Cu-c[E4W5C] over 24 h. Ex vivo autoradiography was performed on resected brain slices and subsequently stained with cresyl violet to enable high-resolution spatial analysis of tracer accumulation. A non-pH-sensitive cell-penetrating control peptide (c[R4W5C]) was used to confirm specificity of [64Cu]Cu-c[E4W5C]. CD11b (macrophage/microglia) and TMEM119 (microglia) immunostaining was performed to correlate extent of neuroinflammation with [64Cu]Cu-c[E4W5C] PET signal. Results: [64Cu]Cu-c[E4W5C] radiochemical yield and purity were more than 95% and more than 99%, respectively, with molar activity of more than 0.925 MBq/nmol. Significantly increased [64Cu]Cu-c[E4W5C] uptake was observed in lipopolysaccharide-treated mice (vs. vehicle) within peripheral tissues, including blood, lungs, liver, and small intestines (P < 0.001-0.05). Additionally, there was significantly increased [64Cu]Cu-c[E4W5C] uptake in the brains of lipopolysaccharide-treated animals. Autoradiography confirmed increased uptake in the cerebellum, cortex, hippocampus, striatum, and hypothalamus of lipopolysaccharide-treated mice (vs. vehicle). Immunohistochemical analysis revealed microglial or macrophage infiltration, suggesting activation in brain regions containing increased tracer uptake. [64Cu]Cu-c[R4W5C] demonstrated significantly reduced uptake in the brain and periphery of lipopolysaccharide mice compared with the acid-mediated [64Cu]Cu-c[E4W5C] tracer. Conclusion: Here, we demonstrate that a pH-sensitive PET tracer specifically detects acidosis in regions associated with sepsis-driven proinflammatory responses. This study suggests that [64Cu]Cu-pHLIC is a valuable tool to noninvasively assess acidosis associated with both central and peripheral innate immune activation.


Subject(s)
Acidosis/complications , Acidosis/diagnostic imaging , Peptides, Cyclic , Sepsis/complications , Animals , Female , Hydrogen-Ion Concentration , Isotope Labeling , Mice , Mice, Inbred C57BL , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacokinetics , Positron Emission Tomography Computed Tomography , Tissue Distribution
10.
Article in English | MEDLINE | ID: mdl-35280700

ABSTRACT

The thyroid hormone receptor (TR) is essential for the proper regulation of metabolism and development, as it regulates gene expression in response to thyroid hormone. Nuclear localization signals (NLSs) and nuclear export signals (NESs) allow for TR transport into and out of the nucleus, respectively. Previous research suggests that nuclear import, nuclear retention, and nuclear export of TR are associated with modulation of gene expression, the alteration of which can contribute to various diseases. Here, we examined the impact of cancer-associated mutations on TR localization patterns as a way of analyzing key structural components of TR and to further explore the correlation between TR trafficking, misfolding, and disease. Through mammalian cell transfection of expression plasmids for green fluorescent protein (GFP) and mCherry-tagged TRα1 and quantitative fluorescence microscopy, we examined particular groups of TRα1 mutations that were observed in patients with hepatocellular carcinoma, renal cell carcinoma, and thyroid cancer, and are associated with NLSs and NESs of TRα1. We also investigated structural alterations of the mutants by in silico modeling. Our results show striking shifts towards a more cytoplasmic localization for many of the mutants and an increased tendency to form cytosolic and nuclear aggregates.

SELECTION OF CITATIONS
SEARCH DETAIL
...